Гироскопы на радиоуправляемых моделях. Гироскоп в смартфоне - что это такое и зачем он нужен? Скорость вращения гироскопа

06.04.2024 Безопасность

Гироскопы предназначены для демпфирования угловых перемещений моделей вокруг одной из осей, либо стабилизации их углового перемещения. Применяются в основном на летающих моделях в случаях, когда необходимо повысить стабильность поведения аппарата или создать ее искусственно. Наибольшее применение (около 90%) гироскопы нашли в вертолетах обычной схемы для стабилизации относительно вертикальной оси путем управления шагом рулевого винта. Это обусловлено тем, что вертолет обладает нулевой собственной стабильностью по вертикальной оси. В самолетах гироскоп может стабилизировать крен, курс и тангаж. Курс стабилизируют в основном на турбореактивных моделях для обеспечения безопасного взлета и посадки, - там большие скорости и взлетные дистанции, а ВПП, как правило, узкая. Тангаж стабилизируют на моделях с малой, нулевой, либо отрицательной продольной устойчивостью (с задней центровкой), повышающей их маневренные возможности. Крен полезно стабилизировать даже на учебных моделях.

На самолетах и планерах спортивных классов гироскопы запрещены требованиями FAI.


Гироскоп состоит из датчика угловой скорости и контроллера. Как правило, они конструктивно объединены, хотя на устаревших, а также "крутых" современных гироскопах размешены в разных корпусах.

По конструкции датчиков вращения, гироскопы можно разделить на два основных класса: механические и пьезо. Точнее, сейчас делить особо уже не на что, потому что механические гироскопы полностью сняты с производства как морально устаревшие. Тем не менее, распишем и их принцип работы тоже, хотя бы ради исторической справедливости.

Основу механического гироскопа составляют тяжелые диски, закрепленные на валу электродвигателя. Двигатель в свою очередь имеет одну степень свободы, т.е. может свободно вращаться вокруг оси, перпендикулярной валу двигателя.


Раскрученные двигателем тяжелые диски обладают гироскопическим эффектом. Когда вся система начинает вращаться вокруг оси, перпендикулярной двум другим, двигатель с дисками отклоняется на определенный угол. Величина этого угла пропорциональна скорости поворота (те, кто интересуется силами, возникающими в гироскопах, могут поглубже ознакомиться с кориолисовым ускорением в специальной литературе). Отклонение мотора фиксируется датчиком, сигнал которого поступает на блок электронной обработки данных.

Развитие современных технологий позволило разработать более совершенные датчики угловых скоростей. В результате появились пьезогироскопы, которые к настоящему времени полностью вытеснили механические. Конечно, они по-прежнему используют эффект кориолисова ускорения, но датчики являются твердотельными, то есть вращающиеся части отсутствуют. В наиболее распространенных датчиках используются вибрирующие пластины. Поворачиваясь вокруг оси, такая пластина начинает отклоняться в плоскости, поперечной плоскости вибрации. Это отклонение измеряется и поступает на выход датчика, откуда снимается уже внешней схемой для последующей обработки. Самыми известными производителями подобных датчиков являются фирмы Murata и Tokin .

Пример типичной конструкции пьезоэлектрического датчика угловых скоростей дан на следующем рисунке.


У датчиков подобной конструкции есть недостаток в виде большого температурного дрейфа сигнала (т.е. при изменении температуры на выходе пьезодатчика, находящегося в неподвижном состоянии, может появиться сигнал). Однако достоинства, получаемые взамен, намного перекрывают это неудобство. Пьезогироскопы потребляют намного меньший ток по сравнению с механическими, выдерживают большие перегрузки (менее чувствительны к авариям), позволяют более точно реагировать на повороты моделей. Что касается борьбы с дрейфом, то в дешевых моделях пьезогироскопов есть просто регулировка "нуля", а в более дорогих - автоматическая установка "нуля" микропроцессором при подаче питания и компенсация дрейфа температурными датчиками.

Жизнь, однако, не стоит на месте, и вот уже в новой линейке гироскопов от Futaba (Семейство Gyxxx с системой "AVCS") уже стоят датчики от Silicon Sensing Systems , которые очень выгодно отличаются по характеристикам от продуктов Murata и Tokin. Новые датчики имеют более низкий температурный дрейф, более низкий уровень шумов, очень высокую виброзащищенность и расширенный диапазон рабочих температур. Это достигнуто за счет изменения конструкции чувствительного элемента. Он выполнен в виде кольца, работающего в режиме изгибных колебаний. Кольцо делается методом фотолитографии, как микросхема, поэтому датчик называется SMM (Silicon Micro Machine). Не будем углубляться в технические подробности, любопытные смогут найти все здесь: http://www.spp.co.jp/sssj/comp-e.html . Приведем лишь несколько фотографий самого датчика, датчика без верхней крышки и фрагмента кольцевого пьезоэлемента.


Типичные гироскопы и алгоритмы их работы

Наиболее известными производителями гироскопов на сегодняшний день являются фирмы Futaba , JR-Graupner , Ikarus , CSM , Robbe , Hobbico и т.д.

Теперь рассмотрим режимы работы, которые используются в большинстве выпускаемых гироскопов (всякие необычные случаи рассмотрим потом отдельно).

Гироскопы со стандартным режимом работы

В этом режиме гироскоп демпфирует угловые перемещения модели. Такой режим достался нам в наследство от механических гироскопов. Первые пьезогироскопы отличались от механических в основном датчиком. Алгоритм работы остался неизменным. Суть его сводится к следующему: гироскоп измеряет скорость поворота и выдает коррекцию к сигналу с передатчика, чтобы замедлить вращение, насколько это возможно. Ниже дается пояснительная блок-схема.


Как видно из рисунка, гироскоп пытается подавить любое вращение, в том числе и то, которое вызвано сигналом с передатчика. Чтобы избежать такого побочного эффекта, желательно на передатчике задействовать дополнительные микшеры, чтобы при отклонение ручки управления от центра, чувствительность гироскопа плавно уменьшалась. Такое микширование может быть уже реализовано внутри контроллеров современных гироскопов (чтобы уточнить, есть оно или нет - посмотрите характеристики устройства и руководство по эксплуатации).

Регулировка чувствительности реализуется несколькими способами:

  1. Дистанционная регулировка отсутствует. Чувствительность задается на земле (регулятором на корпусе гироскопа) и не меняется во время полета.
  2. Дискретная регулировка (dual rates gyro). На земле задается два значения чувствительности гироскопа (двумя регуляторами). В воздухе можно выбирать нужное значение чувствительности по каналу регулирования.
  3. Плавная регулировка. Гироскоп выставляет чувствительность пропорционально сигналу в регулирующем канале.

В настоящее время практически все современные пьезогироскопы имеют плавную регулировку чувствительности (а о механических гироскопах можно уже смело забыть). Исключение составляют только базовые модели некоторых производителей, где чувствительность устанавливается регулятором на корпусе гироскопа. Дискретная регулировка необходима только с примитивными передатчиками (где нет дополнительного пропорционального канала или нельзя выставить длительности импульсов в дискретном канале). В этом случае в канал регулирования гироскопа можно включить небольшой дополнительный модуль, который будет выдавать заданные значения чувствительности в зависимости от положения тумблера дискретного канала передатчика.

Если говорить о достоинствах гироскопов, реализующих только "стандартный" режим работы, то можно отметить, что:

  • Такие гироскопы имеют довольно низкую цену (вследствие простоты реализации)
  • При установке на хвостовую балку вертолета, новичкам проще выполнять полеты по кругу, так как за балкой можно особенно не следить (балка сама разворачивается по ходу движения вертолета).

Недостатки:

  • В недорогих гироскопах термокомпенсация сделана недостаточно хорошо. Необходимо вручную выставлять "ноль", который может сместиться при изменении температуры воздуха.
  • Приходится применять дополнительные меры по устранению эффекта подавления гироскопом управляющего сигнала (дополнительное микширование в канале управления чувствительности или увеличение расхода рулевой машинки).

Вот довольно известные примеры описанного типа гироскопов:

При выборе рулевой машинки, которая будет подключаться к гироскопу, следует отдавать предпочтение более быстрым вариантам. Это позволит добиться большей чувствительности, без риска, что в системе возникнут механические автоколебания (когда из-за перерегулирования рули начинают сами двигаться из стороны в сторону).

Гироскопы с режимом удержания направления

В этом режиме стабилизируется угловое положение модели. Для начала маленькая историческая справка. Первой фирмой, которая сделала гироскопы с таким режимом, была CSM. Режим она назвала Heading Hold. Поскольку название было запатентовано, другие фирмы стали придумывать (и патентовать) свои собственные названия. Так возникли марки "3D", "AVSC" (Angular Vector Control System) и другие. Такое многообразие может повергнуть новичка в легкое замешательство, но на самом деле, никаких принципиальных различий в работе таких гироскопов нет.

И еще одно замечание. Все гироскопы, которые имеют режим Heading Hold, поддерживают также и обычный алгоритм работы. В зависимости от выполняемого маневра, можно выбирать тот режим гироскопа, который больше подходит.

Итак, о новом режиме. В нем гироскоп не подавляет вращение, а делает его пропорциональным сигналу с ручки передатчика. Разница очевидна. Модель начинает вращаться именно с той скоростью, с которой нужно, независимо от ветра и других факторов.

Посмотрите блок-схему. По ней видно, что из управляющего канала и сигнала с датчика получается (после сумматора) разностный сигнал ошибки, который подается на интегратор. Интегратор же меняет сигнал на выходе до тех пор, пока сигнал ошибки не будет равен нулю. Через канал чувствительности регулируется постоянная интегрирования, то есть скорость отработки рулевой машинки. Разумеется, вышеприведенные объяснения весьма приблизительны и обладают рядом неточностей, но ведь мы собираемся не делать гироскопы, а применять их. Поэтому нас гораздо больше должны интересовать практические особенности применения подобных устройств.

Достоинства режима Heading Hold очевидны, но хочется особо подчеркнуть плюсы, которые проявляются при установке такого гироскопа на вертолет (для стабилизации хвостовой балки):

  • на вертолете начинающий пилот в режиме висения может практически не управлять хвостовым винтом
  • отпадает необходимость в микшировании шага хвостового винта с газом, что несколько упрощает предполетную подготовку
  • триммирование хвостового винта можно производить без отрыва модели от земли
  • становится возможным выполнение таких маневров, которые раньше были затруднены (например, полет хвостом вперед).

Для самолетов применение данного режима тоже может быть оправдано, особенно на некоторых сложных 3D-фигурах вроде "Torque Roll".

Вместе с тем следует отметить, что каждый режим работы имеет свои особенности, поэтому использование Heading Hold везде подряд не является панацеей. При выполнении обычных полетов на вертолете, особенно новичками, использование функции Heading Hold может привести к потере управления. Например, если не управлять хвостовой балкой при выполнении виражей, то вертолет опрокинется.

В качестве примеров гироскопов, которые поддерживают режим Heading Hold, можно привести следующие модели:

Переключение между стандартным режимом и Heading Hold производится через канал регулировки чувствительности. Если менять длительность управляющего импульса в одну сторону (от средней точки), то гироскоп будет работать в режиме Heading Hold, а если в другую - то гироскоп перейдет в стандартный режим. Средная точка - когда длительность канального импульса равна примерно 1500 мкс; то есть, если бы мы подключили на этот канал рулевую машинку, то она установилась бы в среднее положение.

Отдельно стоит затронуть тему применяемых рулевых машинок. Для того, чтобы добиться максимального эффекта от Heading Hold, нужно ставить рулевые машинки с повышенной скоростью работы и очень высокой надежностью. При повышении чувствительности (если скорость отработки машинки позволяет), гироскоп начинает перекладывать сервомеханизм очень резко, даже со стуком. Поэтому машинка должна иметь серьезный запас прочности, чтобы долго прослужить и не выйти из строя. Предпочтение стоит отдавать так называемым "цифровым" машинкам. Для самых современных гироскопов разрабатывают даже специализированные цифровые сервомашинки (например, Futaba S9251 для гироскопа GY601). Помните, что на земле, из-за отсутствия обратной связи от датчика вражений, если не принять дополнительных мер, то гироскоп обязательно выведет рулевую машинку в крайнее положение, где она станет испытывать максимальную нагрузку. Поэтому если в гироскоп и рулевую машинку не встроены функции ограничения хода, то рулевая машинка должна уметь выдерживать большие нагрузки, чтобы не выйти из строя еще на земле.

Специализированные самолетные гироскопы

Для применения в самолетах с целью стабилизации крена начали выпускать специализированные гироскопы. От обычных они отличаются тем, что имеют еще один канал внешней команды.

При управлении каждого элерона отдельным серво, самолетчики с компьютерной аппаратурой задействуют функцию флаперонов. Микширование происходит на передатчике. Однако контроллер самолетного гироскопа на модели автоматически определяет синфазное отклонение обоих каналов элеронов и не мешает ему. А противофазное отклонение задействуется в петле стабилизации крена - в ней присутствуют два сумматора и один датчик угловой скорости. Других отличий нет. Если элероны управляются от одного серво, то специализированный самолетный гироскоп не нужен, сгодится и обычный. Самолетные гироскопы делают фирмы Hobbico, Futaba и другие.

Касаясь применения гироскопов на самолете, нужно отметить, что нельзя использовать режим Heading Hold на взлете и посадке. Точнее, в тот момент, когда самолет касается земли. Это потому, что когда самолет находится на земле, он не может накрениться или повернуть, поэтому гироскоп выведет рули в какое-нибудь крайнее положение. А при отрыве самолета от земли (или сразу после посадки), когда модель имеет большую скорость, сильное отклонение рулей может сыграть злую шутку. Поэтому настоятельно рекомендуется использовать гироскоп на самолетах в стандартном режиме.

В самолетах эффективность рулей и элеронов пропорциональна квадрату скорости полета самолета. При широком диапазоне скоростей, что характерно для сложного пилотажа, необходимо компенсировать это изменение регулированием чувствительности гироскопа. Иначе при разгоне самолета система перейдет в автоколебательный режим. Если же задать сразу низкий уровень эффективности гироскопа, то на малых скоростях, когда он особенно нужен, от него не будет должного эффекта. На настоящих самолетах такое регулирование делает автоматика. Возможно, скоро так будет и на моделях. В некоторых случаях переход в автоколебательный режим органа управления полезен - при очень низких скоростях полета самолета. Многие наверное видели, как на МАКС-2001 "Беркут" С-37 показывал фигуру "харриер". Переднее горизонтальное оперение при этом работало в автоколебательном режиме. Гироскоп в канале крена позволяет делать самолет "несваливаемым на крыло". Подробнее о работе гироскопа в режиме стабилизации тангажа самолетов можно почитать в известной монографии И.В.Остославского "Аэродинамика самолета".

Заключение

В последние годы появилось много дешевых моделей миниатюрных гироскопов, позволяющих расширить сферу их применения. Простота инсталляции и низкие цены оправдывают использование гироскопов даже на учебных и радиобойцовых моделях. Прочность пьезоэлектрических гироскопов такова, что при аварии скорее испортится приемник или серво, чем гироскоп.

Вопрос о целесообразности насыщения летающих моделей современной авионикой каждый решает сам. На наш взгляд, в спортивных классах самолетов, - по крайней мере, на копиях, гироскопы все-таки со временем разрешат. Иначе невозможно обеспечить реалистичный, похожий на оригинал полет уменьшенной копии из-за разных чисел Рейнольдса. На хоббийных аппаратах применение искусственной стабилизации позволяет расширить диапазон погодных условий полетов, и летать в такой ветер, когда только ручное управление не в состоянии удержать модель.

Множеством интересных функций и датчиков оснащены смартфоны и другие мобильные устройства. Одним из ведущих модулей является гиродатчик или гироскоп. Диковинная новинка в девайсе, выполненная на основе микроэлектромеханической системы, сделала большой рывок в усовершенствование функционала и завоевала большую симпатию среди пользователей. Происхождение слова «гироскоп» имеет давнюю историю. Оно расшифровывается как словосочетание «круг» и «смотрю».

Родоначальником древнегреческого изречения был французский физик Леон Фуко. В XIX веке он занимался исследованием суточного вращения Земли, и этот термин подошёл для нового устройства как нельзя кстати. Гиродатчиками пользуются авиакомпании, судоходство, космонавтика. Компания Apple, производитель современных мобильных телефонов, первой взяла за основу данный функционал и внедрила его в iPhone 4. Несмотря на то, что видео ниже на английском языке, демонстрация технологии от Стив Джобса понятна без перевода.

Теперь, для того чтобы ответить на входящие звонки или полистать страницы электронной книги, достаточно только встряхнуть телефон. За счёт устройства быстро просматриваются фотографии и другие изображения, меняется музыка. Новое приложение у смартфона iPone под названием CoveFlow позволило использовать калькулятор. Теперь легко выполняются такие функции, как деление, умножение, сложение и вычитание. При повороте телефона на 90° данная функция машинально переключается на развёрнутый функционал со множеством сложных математических действий.

Наряду с легкими функциями разработчики внедрили в устройство более сложные программные обеспечения. Например, в некоторых операционных системах при помощи встряхивания телефона запускается обновление для Bluetooth или запускается специфичная программа по измерению углов наклона и уровня. Гироскоп прекрасно учитывает скорость перемещения, и определяет местоположение человека на незнакомой местности.

С технической точки зрения, гироскоп довольно сложное устройство. При его разработке, за основу взяли принцип работы акселерометра, который представляет из себя колбу с пружиной и грузом внутри. На одной стороне пружины закреплен груз, а вторая сторона пружины зафиксирована на демпфере для гашения колебания. При встряхивании (ускорении) измерительного прибора, прикрепленная масса движется и приводит в напряжение пружину.

Такие колебания можно представить в виде данных. Если расположить три таких акселерометра перпендикулярно, то можно получить представление о том, как расположен предмет в пространстве. Поскольку технически расположить такой громоздкий измерительный прибор в смартфоне невозможно, то принцип работы оставили тот же, но груз заменили инертной массой, который расположен в очень маленьком чипе. При ускорении, меняется положение инертной массы и таки образом рассчитывается положение смартфона в пространстве.

С помощью GPS-навигации на дисплее появляется карта, которая фиксирует аналогичное направление объектов при любом повороте тела. Другими словами, если вы повернулись лицом к реке, то она автоматически отобразится на карте. При развороте на 180 градусов к водоему мгновенно происходят аналогичные изменения на мониторе. С использованием этой функции упрощается ориентировка на местности. Особенно это важно людям, занимающимся активными видами отдыха.

Благодаря точному учёту скорости перемещения управление смартфоном становится более удобным и гармоничным. Зачастую используют гироскопы на Андроид любители компьютерных игр — геймеры. Уникальное устройство в девайсе молниеносно превращает картинки в реальность. Особенно правдоподобными становятся гонки, симуляторы, стрелялки, Pokemon Go.

Достаточно изменить положение смартфона и скорость поворота, то езда на виртуальном автомобиле покажется вам реальной. Герои на дисплее точно направят автомат, нацелят пушку, повернут руль, поднимут в воздух вертолёт, убьют врага. Карманные монстры не будут прыгать по виртуальной траве, а станут двигаться по настоящему миру в видимой области встроенной камеры.

Конечно, это далеко не весь перечень положительных характеристик, присущих Android смартфонам и iPhone. Перечислять приятные и удобные моменты можно бесконечно. Однако не все пользователи оценили универсальные качества по достоинству. Одни предпочли отказаться от гироскопа в новом смартфоне, другие просто отключили его. И этому есть своё объяснение.
Среди многочисленных плюсов бывают малозаметные минусы.

  1. Из недостатков следует выделить установку отдельных приложений, реагирующих с незначительным опозданием на изменения положений в пространстве. Вроде бы сущий пустяк, но наличие этого сенсора доставляет определённые неудобства пользователю смартфона. Особенно заметны недостатки при чтении электронной книги лёжа. Читающий меняет позу, в это же время, связанный с устройством гиродатчик изменяет положение странички. Приходится в срочном порядке перенастраивать её ориентацию.
  2. Производители смартфонов на своих презентациях в большинстве случаев умалчивают о наличии важного датчика. При покупке новой модели присутствие гироскопа можно обнаружить в технических характеристиках гаджета в перечне датчиков. Есть и другие способы, например, установка клиента YouTube, позволяющая быстро установить функционал. Использование приложения AnTuTu Benchmark, Sensor Sense также устанавливает встроенный гиродатчик или его отсутствие.

Современный элемент смартфона работает на постоянной основе. Это самостоятельный датчик, не требующий калибровки. Его не нужно ни включать, ни отключать. Автоматика сделает эту работу за вас. В случае если устройство отсутствует, то вы не сможете играть в виртуальную реальность. Вам просто придётся купить новый телефон со встроенными функциями.

Статьи и Лайфхаки

Содержание :

Любой современный телефон оснащен несколькими датчиками. Как правило, это , расстояния, магнитометрический датчик, термальный датчик ускорения, и гироскоп (гиродатчик).

Все они относятся к группе МЕМS – микроэлектромеханические системы. Вовсе не обязательно, что весь этот набор присутствует в каждом смартфоне, но во многих. Попробуем детально рассмотреть, что такое гироскоп в телефоне и чем он отличается от акселерометра.

Название произошло от двух древнегреческих слов, которые переводятся как «круг» и «смотрю».

Бытует заблуждение, что гиродатчик – и есть акселерометр. Нет, это не так. Их функции, конечно, схожи, но приборы все-таки разные. Разберем почему.

Функции гироскопа в телефоне

Гиродатчик – сенсорный датчик, фиксирующий положение объекта в пространстве относительно трех плоскостей, а акселерометр – это прибор, который измеряет проекцию кажущегося ускорения.

Так, если акселерометр в телефоне отвечает, в основном, за поворот изображения дисплея, то гиродатчик – за мелкие движения в любой плоскости.

И конечно, если в мобильном устройстве присутствуют оба эти датчика, то чувствительность к самым мелким и быстрым движениям (наклонам, поворотам) намного увеличивается.

Что такое гироскоп в телефоне понятно, а для чего он нужен? Использование гиродатчика в смартфоне открыло перед пользователями совершенно новые и интересные возможности. И пионерами здесь стали владельцы iPhone.

Например, простым встряхиванием можно ответить на входящий звонок, листать картинки или страницы электронной книги, можно менять прослушиваемый трек на следующий, ставить паузу и запускать вновь.

При встряхивании iPhone открывается меню, в котором можно выбрать отмену последнего действия или возврат последнего отмененного.

Кто и как использует гироскоп в телефоне


Главный пользователь этого сенсора – это, конечно, геймер. Его наличие переводит процесс игры в другое качество. С ним можно управлять не только поворотами, но и скоростью поворотов.

Любое движение героя на дисплее становится более точное, реалистичное. Этот датчик совершенно необходим для гонок, стрелялок, симуляторов и т.д.

Именно он помогает нацелить пушку, повернуть руль автомобиля или управлять вертолетом. С его помощью прыгают пингвины, злые акулы и другая живность.

И вообще, наличие этого сенсора делает пользование смартфоном намного приятнее и удобнее.

Привет всем, уважаемые пользователи лучшего мобильного портала Trashbox. Сегодняшняя шестая по счёту статья из рубрики «Как это работает» посвящается гироскопу. Если вам не известно, что это такое - данная статья для вас. Давайте же узнаем, что такое гироскоп и как это работает. Самое интересное под катом .

Гироскоп (в переводе значит «вращение» или «смотреть») - устройство, имеющее способность измерения изменения углов ориентации связанного с ним тела относительно инерциальной системы координат. В настоящее время известно два типа гироскопов: механический и оптический. По режиму действия гироскопы делятся на: датчики угловой скорости и указатели направления. Однако, одно устройство может работать одновременно в разных режимах в зависимости от типа управления.

Что касается механических гироскопов, то из них больше всех известен роторный гироскоп - это твёрдое тело, которое быстро вращается и ось которого способна изменять ориентацию в пространстве. Скорость вращения гироскопа при этом существенно превышает скорость поворота оси его вращения. Основным свойством данного гироскопа является способность сохранения в пространстве неизменного направления оси вращения при отсутствии какого-либо воздействия на неё внешних сил. Основная часть роторного гироскопа - быстро-вращающийся ротор, имеющий несколько степеней свободы (осей возможного вращения).

Принцип работы

Принцип работы гироскопа заключается в грузиках, которые вибрируют на плоскости с частотой скорости умноженной на перемещение. При повороте гироскопа возникает так называемое Кориолисово ускорение. Если вы пропускали физику в школе или не знаете, то у всех тел есть единое свойство - при вращении они сохраняют свою ориентацию относительно направления силы тяжести. По сути, гироскоп - это волчок, который вращается вокруг вертикальной оси, закреплённый в раме, которая способна поворачиваться вокруг горизонтальной оси, и в свою очередь закреплена в другой раме, которая может поворачиваться вокруг третьей оси. Таким образом, можно придти к выводу: как бы мы не поворачивали волчок, он всегда имеет возможность всё равно находиться в вертикальном положении. Датчики снимают сигнал, как волчок ориентирован относительно рам, а процессор считывает, как рамы в этом случае должны быть расположены относительно силы тяжести.

Гироскопы применяются в технике. Они используются в виде компонентов как в системах навигации (авиагоризонт, гирокомпас и т. п.), так и в системах ориентации и стабилизации космических аппаратов. Что касается той самой системы стабилизации, то она бывает трёх типов: система силовой стабилизации (используется на двухстепенных гироскопах), система индикаторно-силовой стабилизации (также на двухстепенных гироскопах) и система индикаторной стабилизации (на трёхстепенных гироскопах).

А теперь поподробнее об этих трёх основных типах. Система силовой стабилизации: для стабилизации вокруг каждой оси требуется один гироскоп. Сама стабилизация осуществляется непосредственно гироскопом, а также двигателем разгрузки. В начале действует гироскопический момент, а потом уже подключается двигатель разгрузки. Система индикаторно-силовой стабилизации: для стабилизации также требуется один гироскоп. Стабилизация осуществляется только двигателями разгрузки, но в начале появляется небольшой гироскопический момент. И последняя - система индикаторной стабилизации: для стабилизации вокруг двух осей нужен один гироскоп. Стабилизация осуществляется только двигателями разгрузки.

Использование гироскопа в мобильных устройствах

Давайте же затронем тему использования гироскопа в мобильных устройствах и игровых приставках. В настоящее время в большинстве смартфонов используется так называемый МЭМС-акселерометр. Будучи датчиком ускорения, в покойном состоянии он видит только один вектор - вектор всемирной силы тяготения, который всегда направлен к центру Земли. По разложениям вектора на чувствительные оси датчика без каких-либо затруднений вычисляется угловое положение устройства в пространстве. Также разложение вектора может показать, что датчик неспособен определить разворот устройства по углу курса, то есть поворот влево или вправо при поставленном на ребро смартфоне - проекция вектора на курс всегда равняется нулю. Впервые игровой контроллер, умеющий определять своё положение в пространстве, был выпущен компанией Nintendo - Wii Remote для игровой приставки Wii, и в нём используется только трёхмерный акселерометр.

Кроме того, гироскоп стал применяться и в игровых контроллерах. Например, Sixaxis для SONY PlayStation третьего поколения и Wii MotionPlus для Nintendo Wii. В обоих игровых контроллерах используются два дополняющих друг друга пространственных сенсора: гироскоп, а также акселерометр. Также в новейших контроллерах, кроме акселерометра, используется дополнительный пространственный сенсор - гироскоп. Если привести работу гироскопа в других вещах, то существуют игрушки на основе гироскопа. Самыми банальными примерами являются йо-йо и волчок или в народе его называют «юла». Волчки же отличаются от гироскопов тем, что не имеют ни одной неподвижной точки.

В других сферах также есть применение гироскопу - их целый список. Гироскоп используется в приборах навигации в самолётах и космических аппаратах, в оружии (пуля при стрельбе закручивается, это придаёт ей гораздо большую устойчивость и повышает точность стрельбы), колёса велосипеда или подобного устройства работают как гироскопы - это не даёт ездоку упасть. Таким образом, любой вращающийся предмет можно назвать гироскопом - он противодействует отклонению оси вращения.

С некоторых пор выяснилось, что гироскоп является очень важным датчиком. И весьма печально, что об его отсутствии производители смартфонов скромно умалчивают на своих презентациях. К счастью, узнать о наличии или отсутствии гироскопа можно как до покупки устройства, так и после. Как это сделать - рассказано в сегодняшней статье.

Но сначала давайте разберемся с тем, чем именно является гироскоп. Также мы постараемся выяснить, настолько ли важной деталью он считается. И лишь после этого мы расскажем вам о том, как проверить его наличие.

Полноценный гироскоп по своей форме похож на юлу или волчок. Он обладает подставкой, диском-ротором, шпилькой и несколькими обручами. Его конструкция выполнена таким образом, что диск всегда находится в одном положении, за что следует поблагодарить силу тяжести.

В смартфон невозможно установить классический гироскоп, так как он имеет слишком крупные размеры. Поэтому вместо него используется специальный датчик, построенный на основе микроэлектромеханической системы. Его ширина варьируется от 5 до 10 мм, а высота не превышает 5 мм. Однако и такие габариты кажутся некоторым производителям смартфонов чересчур большими, в связи с чем частенько они отказываются от установки гироскопа.

Где используется гироскоп?

Данный датчик является усовершенствованной версией акселерометра. С его помощью операционная система не только вовремя узнаёт о передвижении и вращении устройства, но и может с точностью отслеживать все эти действия. Если акселерометр - это своеобразный строительный уровень, то гироскоп увеличивает точность показаний этого датчика в разы.

Если вы в будущем хотите приобрести VR-шлем для Android, то в вашем аппарате обязан присутствовать гироскоп. Данный датчик будет отслеживать повороты вашей головы, направляя виртуальный взгляд именно в ту сторону, в которую направлены ваши настоящие глаза. Также гироскоп на Андроид помогает в просмотре звездного неба. Если использовать соответствующее приложение, то оно будет понимать, в какую сторону света направлена камера, показывая названия видимых в данный момент созвездий.

А ещё этот датчик используется в играх с дополненной реальностью. Самым ярким примером тому служит Pokemon Go. Если гироскопа в смартфоне нет, то карманные монстры будут прыгать по виртуальной траве. Если же датчик присутствует, то зверьки станут двигаться по настоящему миру, видимая область которого попадает во взгляд встроенной камеры.

Как узнать, имеется ли гироскоп в смартфоне или планшете

Существуют несколько способов узнать о том, присутствует ли в вашем устройстве гироскоп. Самый банальный - это пойти на официальный сайт производителя, чтобы ознакомиться с техническими характеристиками гаджета. Конкретно гироскоп нужно искать в перечне датчиков. Но мы ведь не ищем легких путей? Поэтому перейдет к другим способам.

Если на ваш смартфон или планшет установлен клиент YouTube, то откройте его и введите в поисковую строку запрос «360 видео ». Запустите показ любого из выданных результатов. Если вы можете вертеть взглядом виртуальной камеры при помощи поворотов смартфона, то гироскоп присутствует и успешно функционирует. Если поворачивать взгляд можно только пальцем, то датчика в составе аппарата нет.

Другой способ заключается в использовании приложения AnTuTu Benchmark . Вам нужно его скачать, установить и запустить. Во вкладке «Инфа » вы обнаружите все технические спецификации своего устройства. В том числе вы увидите наименование встроенного гироскопа. Либо обнаружите, что он «Не поддерживается » (то есть, его попросту нет).

Вместо AnTuTu можно установить и более специализированную утилиту. Речь идет о Sensor Sense . Он отображает показания со всех встроенных в смартфон датчиков. Если гироскопа в списке нет, то он в гаджет не встроен. Это можно сказать и в том случае, если данные у этого датчика не изменяются при вращении аппарата в руках.

Как включить гироскоп на Андроиде?

Данный элемент смартфона работает на постоянной основе. Его нельзя включить или отключить. Если вы в этот момент думаете о функции поворота экрана, то за неё отвечает акселерометр. И эту функцию действительно можно отключить. Для этого совершите следующие действия:

1. Перейдите в раздел с настройками системы.

2. Перейдите в подраздел «Экран ».

3. Здесь вы без труда обнаружите пункт, отвечающий за действия устройства при его повороте. Смените его значение на нужное.

На корпусе некоторых старых гаджетов (в основном на планшетных компьютерах) можно обнаружить отдельный переключатель. Он блокирует поворот экрана, вне зависимости от выставленных настроек.

Можно ли настроить гироскоп?

Как уже было сказано выше, гироскоп является совершенно самостоятельным датчиком, в работу которого вмешаться никак нельзя. Если акселерометр можно откалибровать, то с гироскопом никакие подобные действия совершить нельзя. Если же он вовсе отсутствует, то придется покупать для дополненной или виртуальной реальности новый телефон.