Предварительный усилитель с темброблоком матюшкина. "Электроника и Радиотехника"Все для любителей! Предварительный усилитель и его БП

29.10.2019 Советы 

Отдаваемое в последнее время предпочтение ламповым выходным усилителям мощности звуковой частоты для звуковоспроизведения высокой верности трудно понять, исходя из объективного их сравнения c транзисторными УМЗЧ. Ведь по всем измеряемым характеристикам современный УМЗЧ на транзисторах существенно превосходит ламповый. На наш взгляд, измеряемыми обычно нелинейными искажениями (НИ) не исчерпываются те искажения, которые определяют качество звуковоспроизведения. B самых совершенных конструкциях транзисторных УМЗЧ уровень НИ доведен практически до слухового порога и доже ниже, поэтому сомнительно, что их можно воспринимать на слух, тем более в условиях маскировки полезным сигналом. Дело, по-видимому, в том, что обычно измеряют НИ в установившемся режиме, когда переходный процесс после подачи на вход испытываемого усилителя измерительного сигнала уже завершен и на входе, и на выходе усилителя, a в замкнутой петле общей отрицательной обратной связи (ООС) установился стационарный колебательный процесс, отвечающий c большей или меньшей точностью поступающему но вход сигналу.

Очевидно, что нелинейность усилителя проявляется гораздо сильнее во время переходного процесса (длительность которого за счет задержки сигнала в цепи ООС может быть значительной), особенно на его начальном этапе, когда действие ООС наименее эффективно (из-за упомянутой задержки). B отличие от динамических искажений, приводящих к перегрузке входного каскада на протяжении всей длительности неблагоприятного по параметрам входного сигнала - рассматриваемые переходные НИ имеются даже тогда, когда отсутствуют динамические, но только пока переходный процесс не закончен. A если учесть, что реальные звуковые программы очень далеки от стационарности и на самом деле вызывают в УМЗЧ почти непрерывный переходный процесс, то при воспроизведении таких программ HИ могут намного превышать измеренные обычными методами в одном и том же экземпляре усилителя.

Вследствие малой длительности переходного процесса по сравнению c временем лабораторных измерений, они пока «ускользают» от экспериментального изучения (для этого требуется разработка специальных методов) и в то же время легко воспринимаются на слух на протяжении звучания всей фонограммы. C этой точки зрения становится понятным преимущество ламповых усилителей: хотя измеряемый уровень НИ y них больше (это относится только к стационарному режиму), в реальных условиях лампы, как гораздо более линейные приборы, обеспечивают меньшие HИ (хотя, конечно, большие, чем те же лампы в стационарном режиме), чем транзисторы, что и обусловливает лучшее звучание ламповых усилителей.

Однако очевидны такие недостатки ламповых усилителей, кок неудобство в эксплуатации, громоздкость и большая масса, значительная потребляемая мощность при сравнительно низких КПД и выходной мощности. B этой связи выглядело бы заманчивым создание транзисторного усилителя c реальным уровнем НИ не хуже, чем y лампового. Последнее означает, что измеряемый по обычным методикам уровень НИ такого усилителя должен быть снижен но один-два порядка (!) по сравнению c лучшими образцами (желательно же – кок можно больше), чтобы НИ в нестационарном режиме имели приемлемую величину.

Однако применяемые сейчас методы линеаризации транзисторных усилителей, по-видимому, себя уже исчерпали и не позволят достичь требуемого коэффициента НИ (Q ≈0,0001…0,00001 %). Поэтому была поставлена задача изучить возможность получения такого рекордно низкого уровня собственных НИ транзисторного УМЗЧ, не останавливаясь перед сложностью схемотехнических решений, а затем и решить, оправдан ли такой подход, приносит ли он выигрыш по качеству звучания по сравнению c существующими схемами.

Представляемая в настоящей роботе конструкция адресована в первую очередь самым взыскательным ценителям высококачественного звуковоспроизведения. Она разработана на основе изложенного в принципа, который является усовершенствованием известного метода снижения искажений, описанного в .

На рис.1 изображена блок-схема двухкаскадного усилителя c передаточной функцией первого каскада К1 и второго К2, передаточной функцией β цепи общей ООС, охватывающей весь усилитель, и передаточной функцией γ цепи местной положительной обратной связи (МПОС), охватывающей первый каскад. Результирующая передаточная функция такого устройство описывается выражением:

К = К 1 К 2 /(1- γ К 1 +К 1 К 2 β)

Если установить усиление в петле МПОС γ К 1 =1, то окажется, что в отличие от усилителя с одной ООС, у которого К = К 1 К 2 /(1- γ К 1 +К 1 К 2 β)и только приближенно К≈1/β (при К 1 К 2 β>>1), передаточная функция данного усилителя будет точно равно 1/β. При этом глубина ООС должна быть больше глубины МПОС, т.е. К 1 К 2 > γ К 1 , что является необходимым (но недостаточным) условием устойчивости. Таким образом, при γ К 1 =1 подавляются все искажения, которые возникают во втором каскаде и причиной которых является непостоянство его передаточной функции (поскольку К=1/β и не зависит от К 2).

Однако абсолютно полное подавление искажений возможно только при идеальном первом каскаде. Реально же ему присущи кок нелинейные, таки частотные искажения, приводящие к отклонению передаточной функции К 1 от оптимального значения. Кроме того, она изменяется из-за колебаний питающих напряжений, температурного дрейфа и изменения со временем параметров деталей. Проблемой является и обеспечение совместной устойчивости такой сложной системы при совместном действии ООС и ПОС (второе условие устойчивости), так как введение ПОС уменьшает запас устойчивости исходной системы . С другой стороны, желательно (для получения наибольшей линейности), чтобы глубина как ПОС, так и ООС была постоянной в рабочем диапазоне частот, т.е. чтобы первый полюс АЧХ системы с разомкнутыми обратными связями находился но частоте f>20-30 кГц, и частота среза в петле ПОС была также не меньше. Между тем выполнить последние требования и одновременно обеспечить надежный запас устойчивости вовсе не просто, a отступление от них значительно снижает эффективность метода. Видимо, поэтому автору неизвестны примеры использования описанного принципа подавления искажений для целей высококачественного звуковоспроизведения.

Принципиальным недостатком устройства показанного на рис.1 является, как показывает анализ, то, что петля МПОС включена последовательно в цепь ООС. Значительно улучшить работу устройства можно путем параллельного подключения петли МПОС к петле ООС, т.е. подключив вход второго каскада не к выходу первого каскада (точка 2, рис.1), а к его входу (точка 1). Блок-схема устройства, предложенного в , показана на рис.2. Важнейшим преимуществом такого устройства является меньший фазовый сдвиг, вносимый в петлю ООС элементами схемы МПОС (от входа устройство до входа второго каскада). Это понятно из сравнения рис.2 с рис.1, так как очевидно, что фаза сигнала в точке 2 отстает от фазы в точке 1 (рис. 1) но фазовый сдвиг, вносимый первым каскадом (и этот сдвиг может быть весьма существенным на частотах 0,2-1 МГц и выше, в области которых должно обеспечиваться устойчивость устройства).

Данное преимущество является решающим для применения этого метода компенсации искажений в высококачественных УМЗЧ, так кок вносимые при его использовании минимальные фазовые сдвиги позволяют получить достаточный запас устойчивости и тем самым обеспечить надежную роботу усилителя c МПОС.

Достоинством устройства, показанного на рис.2 является также возможность более независимого (хотя независимость эта относительная, поскольку петли, по-прежнему взаимодействуют между собой) и оптимального выбора параметров петель МПОС и ООС в соответствии с их функциональным назначением, которое существенно различно. Эта большая независимость видна из выражения для передаточной функции усовершенствованной системы:

К = К 2 /(1- γ К 1 +К 2 β)

которое, в отличие от , не содержит смешанных произведений передаточных функций элементов, относящихся к различным петлям. Такое разделение невозможно в устройстве, показанном на рис. 1, где первый каскад является общей частью петель МПОС и ООС, вследствие чего его параметры определяют одновременно и свойство ООС, и свойство ПОС, из-за чего требования к этим параметрам во многом противоречивы, что также затрудняет решение задачи максимального подавления искажений.

Преимущества параллельного подключения петли МПОС к петле ООС позволяют практически реализовать устройство даже не c одной, а с двумя МПОС, взаимно усиливающими действие друг друга и тем самым улучшающими компенсацию искажений. Блок-схема такого устройства показан но рис.3, где К 1 , К 2 , К З – передаточные функции трех каскадов основного канала усилителя; β – передаточная функция цепи ООС; α 1 γ 1 и α 2 γ 2 - передаточные функции первой и второй петли МПОС соответственно, причем равенство α 1 γ 1 =1 и α 2 γ 2 =1 устанавливаются c возможно большей точностью. Из его передаточной функции:

K = К 1 К 2 К 3 /[(1-α 1 γ 1 )(1-α 2 γ 2 )+К 1 К 2 К 3 ],

следует, что поскольку 1-α 1 γ 1 <<1 , то степень подавления искажений, зависящая от выражения (1-α 1 γ 1 )(1-α 2 γ 2 ), значительно больше, чем в устройстве c одной петлей МПОС, в котором эта степень определяется одним членом 1-α 1 γ 1 >>(1-α 1 γ 1 )(1-α 2 γ 2 ). Однако самым замечательным является то, что при одной МПОС минимально достижимый уровень НИ нельзя сделать меньше искажений, вносимых элементами самой петли МПОС, a в устройстве c двумя (или более) петлями МПОС, как показывает расчет, собственные НИ каждой петли МПОС подавляются действием другой, т.е. возможно снизить НИ ниже уровня, определяемого самым линейным блоком устройства, каким должен быть контур МПОС. Это является существенным преимуществом данного метода компенсации искажений перед другими, позволяющими снижать искажения лишь до предела, определяемого собственной нелинейностью схемы компенсации.

Заметим, что все сказанное выше полностью относится к тем искажениям, которые обусловлены непостоянством передаточных функций (кроме нелинейных, это например, амплитудно-частотные). Такие искажения компенсируются в любых частях устройства, кроме цепи ООС β.

Принципиальная схема УМЗЧ, соответствующая рис.3, изображена на рис.4. Для получения как можно более низкого уровня НИ основной канал усилителя (без МПОС) задуман кок достаточно линейный УМЗЧ. для этого все каскады усилителя выполнены двyxтактными на комплемeнтарных парах транзисторов, что позволило сделать оба плеча симметричными относительно общего провода и получить более линейную амплитудную характеристику. Все транзисторы работают в режиме A, за исключением выходного каскада с плавающим смещением на входе (cyпер-А), которое задается схемой на элементах VT15-VT18, R38-R41, VD15, VD16. Это обеспечивает невыключающийся режим роботы оконечных транзисторов при их малом токе покоя.

Входной каскад выполнен по каскадной схеме (V Т1, VT3, VT2, VT4). Режим работы его транзисторов выбран так, что они не входят в режим отсечки или ограничения тока при действии на входе сигналов с амплитудой, в несколько раз превышающей номинальное входное напряжение даже при отключенной ООС. Этим он выгодно отличается от традиционного дифференциального каскада. Цепочка R19R18 C7 c частотой среза ≈ 90 кГц ограничивает усиление самых высокочастотных составляющих импульсных сигналов, предотвращая перегрузку и последующих каскадов усилителя. Благодаря этим мерам, а также высокому быстродействию за счет отказа от применения в каскадах транзисторов с общим эмиттером и коррекции по опережению (конденсаторы С5, С6), динамические искажения в усилителе отсутствуют, что особенно важно для устойчивой роботы системы с ПОС.

Напряжение ООС с выхода усилителя подается в точку соединения резисторов R11 и R12, которые вместе с R10 и R13 опpeделяют рабочий ток VT 1 и VТ2. Одновременно R10 и R 13 в составе делителей R14/R10C3 и R15/R13C4 задают передаточную функцию цепи ООС. Постоянная составляющая выходного напряжения поступает но эмиттеры входных транзисторов через R10R11 и R12R13, а не только через R14 и R15, поэтому глубина ООС по постоянному напряжению намного больше, чем по переменному, и осуществляется жесткая стабилизация постоянной составляющей напряжения но выходе УМЗЧ. Использование электролитических конденсаторов C3, C4 не приводит, как следует из измерений, к существенному увеличению искажений, так как они поляризованы постоянным напряжением около 4 В (переменная составляющая намного меньше), так что режим их роботы практически линеен.

Второй каскад на транзисторах VT5- V Т8, включенных по схеме ОК-ОБ, является буферным между двумя контурами МПОС. Диоды VD3-VD6 задают напряжение смещения на базах эмиттерных повторителей VT9, VТ10, а диоды VD7, VD8 защищают от слишком сильного его увеличения при неисправностях в усилителе или перегорании одного из предохранителей. Усилитель напряжения (VT11, VТ13 VT12, VT14) также выполнен по каскадной схеме. Напряжение питания первых каскадов около 21 B и задается стабилизатором (V Т23, VT 24, VD17, VD18). Выходные транзисторы работают с малым током покоя, поэтому термостабилизации их не требуется.

Элементы частотной коррекции R19R18C7, R27C10, R22C8, R23C9 формируют АЧХ усилителя, обеспечивая его устойчивость при действии ООС. Одновременно R19 и R27 служат нагрузкой входного и буферного каскадов соответственно, а также нагрузкой петель МПОС, определяя их коэффициент усиления. B контурах МПОС использованы полевые транзисторы для минимизации собственных искажений контуров. Каждый контур МПОС – усилительный каскад с коэффициентом передачи около единицы, изменять который можно подстроечными резисторами R58 и R67. Непосредственным соединением выхода каскада с его входом осуществляется 100%-ная ПОС. Цепочки R57C15 и R66C16 корректируют АЧХ каскадов, улучшая точность компенсации на частотах звукового диапазона. Контуры МПОС подключают к основному каналу в узловых точках А, B и к общему проводу.

Рабочие точки транзисторов первых каскадов и контуров МПОС жестко стабилизированы высокоомными резисторами в их эмиттерных (истоковых) цепях. Этим достигается постоянство характеристик каскадов, подключенных к точкам А и B. Кроме того, транзисторы VTЗVT4 и VT27VT28, VT7VT8 и VT31VT32 -динамическая нагрузка друг для друга, a эмиттерные повторители VT5VT6, VT9VT10 и полевые транзисторы VТ25VT26 и VT29VТ30 обладают высоким входным сопротивлением, поэтому сопротивление нагрузки для петель МПОС определяется резисторами R19, R27 (на звуковых частотах). Благодаря этому удалось добиться высокой стабильности усиления в петлях МПОС, которое не зависит от температуры и не изменяется с течением времени.

Печатная плота разработана с учетом обычных требований. Блоки МПОС на транзисторах VT25-VT32 выполнены на двух отдельных небольших платах и в виде модулей и закреплены перпендикулярно плате основного усилителя вблизи узловых точек A и B.

B усилителе использованы резисторы типа МЛТ, подстроечные резисторы типа СПЗ-29М, конденсаторы К50-16 (С3, С4, С11-С14), К73-17 (С1, С2), КД1, КТ1 – остальные. Теплоотводы транзисторов VT21, V Т22 расположены вблизи элементов схемы плавающего смещения оконечного каскада для компенсации темперотурной не-стабильности тока покоя выходных транзи-cторов.

Налаживание

К выходу усилителя подключают эквивалент нагрузки сопротивлением 4-8 Ом и проверяют работу схемы плавающего смещения оконечной ступени. Для этого подключают осциллограф к базам VT 19 и VT20 и на вход усилителя подают синусоидальный сигнал с частотой 100 Гц. Осциллограмма должна иметь вид пульсирующего напряжения (типа «выпрямленной» синусоиды) c амплитудой около 5 B при номинальном выходном напряжении и сопротивлении нагрузки 4 Ом. При увеличении сопротивления нагрузки или уменьшении входного сигнала эта амплитуда должна уменьшаться.

Проверяют прохождение через усилитель прямоугольных импульсов. Выбросы на осциллограммах выходного напряжения должны отсутствовать, в противном случае увеличивают емкость конденсаторов С5 и С6. На этом настройку основного канала можно считать законченной. Отметим, что уже базовый усилитель (без контуров МПОС) обладает достаточно высокими характеристиками.

Технические характеристики:

Номинальное входное напряжение: 0,3 B

Номинальная выходная мощность но нагрузке 4 Ом: 80 Вт

Номинальная выходная мощность но нагрузке 8 Ом: 40 Вт

Частотный диапазон при завалах на краях не более 0,5 дБ: 15 – 100000 Гц

Входное сопротивление: 50 кОм

Выходное сопротивление: 0 Ом (с контурами МПОС)

Коэффициент интермодуляционных искажений, не более: 0,005 %

Уровень шума (взвешенный): -105 дБ (с контурами МПОС)

Настраивают контуры МПОС, подключив их к схеме и установив движки R58, R67 в положение максимального сопротивления, т.е. минимального петлевого усиления контуров МПОС. Напряжение между стоком и истоком, полевых транзисторов должно быть не более 10 B (максимально допустимое для транзистора КП103), но и не слишком малым, в противном случае добиваются нужного значения подбором резисторов R51, R52, R60, R61. Желательно, чтобы комплементарные транзисторы были подобраны в пары с близкими значениями начального тока стока и напряжения отсечки.

Вход усилителя закорачивают, к выходу подключают акустическую систему (АС) или измерительный прибор, а сигнал от источника (генератора сигналов или источника музыкальной программы, боготой низко и высокочастотными составляющими) c высокоомным выходом подают в узловую точку B, имитируя сигнал искажений. Общий провод источника соединяют с общим проводом усилителя. Регулировкой R58 добиваются максимального ослабления сигнала на выходе усилителя. Подбором R57C15 улучшают подавление высокочастотных составляющих спектра сигнала.

Настроив первый контур МПОС, отключают его от точки А, а источник-имитатор искажений – от точки B. Выход имитатора подключают параллельно резистору R35 и настраивают второй контур МПОС аналогично первому. После этого вновь подключают первый контур МПОС и наблюдают дополнительное подавление сигнала.

На завершающем этапе проводят прямую проверку подавления НИ в усилителе. Достаточно измерить лишь коэффициент интермодуляционных искажений Qи так как при достаточно малых его значениях коэффициент гармонических искажений заведомо приемлем. B соответствии с методикой на вход усилителя подают два синусоидальных сигнала с частотой 25 – 30 кГц и paзнocтью частот ≈1 кГц при одинаковой амплитуде, не превышающей половины номинальной, и оценивают уровень звука, воспроизводимого АС. При отключенных контурах МПОС можно расслышать очень тихий звук (соответствующий Q и = 0,005 %), который при их подключении полностью исчезает.

Для наглядной демонстрации подавления НИ можно временно увеличить нелинейность базового усилителя путем подключения цепочки из последовательно соединенных диода в проводящем направлении (например, Д9) и резистора сопротивлением 47 кОм параллельно резистору R9. При этом Qи базового усилителя возрастает примерно до 0,5 %, комбинационная частота становится отчетливо различимой, и можно более уверенно судить о ее подавлении при подключении контуров МПОС.

Из таких измерений следует, что каждый из контуров МПОС подавляет искажения не менее чем но 30 дБ, а оба они вместе – почти но 60 дБ, так что НИ всего усилителя измерить обычными методами невозможно из-за их крайне малой величины, а можно только оценить с учетом Qи базового усилителя, уменьшенного на три порядка, что дает фантастическую величину (Q и ≈ 0,00001 %).

Следует отметить еще одну положительную сторону применения МПОС в усилителе. Так как при прекращении действия общей ООС коэффициент усиления из-за действия ПОС стремится возрастать, то при задержках сигнала в цепи ООС контуры МПОС становятся фактически форсирующими корректирующими устройствами, которые ускоряют процессы в системе и уменьшают фазовый сдвиг между входным и выходным сигналами . Благодаря этому улучшается качество переходного процесса, что также способствует уменьшению искажений.

Субъективное впечатление от работы данного усилителя трудно передать словами, нужно слышать чистоту и прозрачность его звучания. B этом отношении он не только не уступает ламповым усилителям, но и заметно превосходит их, не внося в звуковую картину практически ничего «от себя». Опыт его эксплуатации в течение 5 лет показал надежность конструкции, а периодические проверки – хорошую стабильность настройки и сохранение точности компенсации искажений в заданных пределах без дополнительных регулировок.

Печатные платы выполнены из фольгированного текстолита. Размер платы основного канала (рис.5) 150 x 105 мм, модулей МПОС (рис.6) 105 х 30 мм. После распайки всех деталей модули МПОС устанавливают на основную плату вдоль направлений, указанных стрелками на рис.1. Соответствующие печатные проводники плат соединяются согласно принципиальной схемы с помощью проволочных перемычек. Шины общего провода можно соединить с помощью проволочных растяжек, удерживающих платы во взаимно перпендикулярном положении.

Отключение и подключение контуров МПОС при настройке производится перемычками между узловыми точками A, Б и соответствующими точками модулей МПОС.

Для стерео усилителя платы основного канала и модулей МПОС имеют вдвое большую ширину – не 105, а 210 мм, и на них нанесены по два одинаковых рисунка.

Компоновке усилителя следует уделить особое внимание. Провода, соединяющие усилитель с блоком питания, должны быть максимально короткими и большого сечения. Особенно это касается провода, соединяющего шину общего провода печатной платы с «нулем» блока питания - точкой соединения конденсаторов фильтра. Если по каким-то причинам последнее требование невыполнимо, то «земляные» выводы конденсаторов С13, С14 лучше не соединять с общим проводом на плате, а, закоротив между собой, соединить с «нулем» блока питания отдельным проводом. K этому же месту подключаются и провода от акустических систем, как показано на рис.7.

Большинство аудиолюбителей достаточно категорично и не готово к компромиссам при выборе аппаратуры, справедливо полагая, что воспринимаемый звук обязан быть чистым, сильным и впечатляющим. Как этого добиться?

Поиск данных по Вашему запросу:

Предварительный усилитель с темброблоком матюшкина

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Пожалуй, основную роль в решении этого вопроса сыграет выбор усилителя.
Функция
Усилитель отвечает за качество и мощь воспроизведения звука. При этом при покупке стоит обратить внимание на следующие обозначения, знаменующие внедрение высоких технологий в производство аудио - аппаратуры:


  • Hi-fi. Обеспечивает максимальную чистоту и точность звука, освобождая его от посторонних шумов и искажений.
  • Hi-end. Выбор перфекциониста, готового немало заплатить за удовольствие различать мельчайшие нюансы любимых музыкальных композиций. Нередко к этой категории относят аппаратуру ручной сборки.

Технические характеристики, на которые следует обратить внимание:

  • Входная и выходная мощность. Решающее значение имеет номинальный показатель выходной мощности, т.к. краевые значения часто недостоверны.
  • Частотный диапазон. Варьируется от 20 до 20000 Гц.
  • Коэффициент нелинейных искажений. Здесь все просто - чем меньше, тем лучше. Идеальное значение, согласно мнению экспертов - 0,1%.
  • Соотношение сигнала и шума. Современная техника предполагает значение этого показателя свыше 100 дБ, что сводит к минимуму посторонние шумы при прослушивании.
  • Демпинг-фактор. Отражает выходное сопротивление усилителя в его соотношении с номинальным сопротивлением нагрузки. Иными словами, достаточный показатель демпинг-фактора (более 100) уменьшает возникновение ненужных вибраций аппаратуры и т.п.

Следует помнить: изготовление качественных усилителей - трудоемкий и высокотехнологичный процесс, соответственно, слишком низкая цена при достойных характеристиках должна Вас насторожить.

Классификация

Чтобы разобраться во всем многообразии предложений рынка, необходимо различать продукт по различным критериям. Усилители можно классифицировать:

  • По мощности. Предварительный - своеобразное промежуточное звено между источником звука и конечным усилителем мощности. Усилитель мощности, в свою очередь, отвечает за силу и громкость сигнала на выходе. Вместе они образуют полный усилитель.

Важно: первичное преобразование и обработка сигнала происходит именно в предварительных усилителях.

  • По элементной базе различают ламповые, транзисторные и интегральные УМ. Последние возникли с целью объединить достоинства и минимизировать недостатки первых двух, например, качество звука ламповых усилителей и компактность транзисторных.
  • По режиму работы усилители подразделяются на классы. Основные классы - А, В, АВ. Если усилители класса А используют много энергии, но выдают высококачественный звук, класса B с точностью до наоборот, класс AB представляется оптимальным выбором, представляя собой компромиссное соотношение качества сигнала и достаточно высокого КПД. Также различают классы C, D, H и G, возникшие с применением цифровых технологий. Также различают однотактные и двухтактные режимы работы выходного каскада.
  • По количеству каналов усилители могут быть одно-, двух- и многоканальными. Последние активно применяются в домашних кинотеатрах для формирования объемности и реалистичности звука. Чаще всего встречаются двухканальные соответственно для правой и левой аудиосистем.

Внимание: изучение технических составляющих покупки, конечно, необходимо, но зачастую решающим фактором является элементарное прослушивание аппаратуры по принципу звучит-не звучит.

Применение

Выбор усилителя в большей степени обоснован целями, для которых он приобретается. Перечислим основные сферы использования усилителей звуковой частоты:

  1. В составе домашнего аудиокомплекса. Очевидно, что лучшим выбором является ламповый двухканальный однотакт в классе А, также оптимальный выбор может составить трехканальный класса АВ, где один канал определен для сабвуфера, с функцией Hi - fi.
  2. Для акустической системы в автомобиле. Наиболее популярны четырехканальные усилители АВ или D класса, в соответствии с финансовыми возможностями покупателя. В автомобилях также востребована функция кроссовер для плавной регулировки частот, позволяющей по мере необходимости срезать частоты в высоком или низком диапазоне.
  3. В концертной аппаратуре. К качеству и возможностям профессиональной аппаратуры обоснованно предъявляются более высокие требования в силу большого пространства распространения звуковых сигналов, а также высокой потребности в интенсивности и длительности использования. Таким образом, рекомендуется приобретение усилителя классом не ниже D, способного работать почти на пределе своей мощности (70-80% от заявленной), желательно в корпусе из высокотехнологичных материалов, защищающем от негативных погодных условий и механических воздействий.
  4. В студийной аппаратуре. Все вышеизложенное справедливо и для студийной аппаратуры. Можно добавить о наибольшем диапазоне воспроизведения частот - от 10 Гц до 100 кГц в сравнении с таковым от 20 Гц до 20 кГц в бытовом усилителе. Примечательна также возможность раздельной регулировки громкости на различных каналах.

Таким образом, чтобы долгое время наслаждаться чистым и качественным звуком, целесообразно заранее изучить все многообразие предложений и подобрать вариант аудио аппаратуры, максимально отвечающий Вашим запросам.

Для высококачественного воспроизведения звуковых программ вид сквозной АЧХ всего тракта, пожалуй, не менее важен для слухового восприятия, чем малый коэффициент нелинейных искажений. Неудачный выбор положений движков регулятора тембра (РТ) может сделать звучание настолько неприятным, что не захочется слушать аппаратуру даже экстракласса с минимальными собственными искажениями других видов. Незаменимым устройством является эквалайзер, которым можно корректировать недостатки акустики помещения, неравномерность АЧХ громкоговорителей и других звеньев, т.е., собственно, выравнивать суммарную АЧХ, а не регулировать тембр. Спектральную обработку в соответствии с индивидуальными особенностями слуха и художественным вкусом слушателя, а также при переходе от одной фонограммы к другой с иным тональным балансом, обычно определяемую как "прибавить басов" или "убрать высокие", следует проводить специально предназначенным для этого РТ, чаще всего двухполосным.

Можно было бы в качестве РТ использовать другой эквалайзер, но это расточительно и неудобно, так как требует (если он многополосный) согласованного перемещения многих движков в соседних частотных полосах. Если же полос немного (3-5), то правильного закона регулирования добиться практически невозможно.

В силу сказанного, РТ должен вызывать к себе не меньшее внимание разработчиков, чем другие узлы аппаратуры. Однако применяемые в настоящее время РТ построены на основе несложных частотно-зависимых цепочек, которые позволяют получать в большинстве случаев только асимптотически логарифмические АЧХ (ЛАЧХ) простейшего вида или близкие к ним. Не изменяет положения регулирование частот перехода и ограничение глубины регулирования тембра.

Для обеспечения естественности звуковоспроизведения существующие схемы РТ мало пригодны. Они "хороши" только при нейтральных положениях регуляторов, когда их влияние на АЧХ исчезает. Об этом свидетельствует большое разнообразие применяемых вариантов РТ (очевидно, из-за неудовлетворенности от работы известных конструкций).

Далее предполагается, что суммарная АЧХ системы звукоусиления, включая акустические системы в конкретном помещении, скорректирована эквалайзером так, что практически не имеет неравномерностей. Необходимость применения РТ при этом вызывается упомянутыми индивидуальным вкусом слушателя и особенностями фонограммы. Рассмотрим, каким требованиям должен удовлетворять РТ для обеспечения максимальной естественности звучания.

Исходим из физиологических особенностей человеческого слуха, учитывая, что громкость звучания зависит не только от уровня звукового давления (УЗД), но и от тембра сигналов.

За основу возьмем известные кривые равной громкости по стандарту DIN-45650, 1966 , приведенные на рис.1,а. Исходя из них, можно построить АЧХ органа слуха -зависимость субъективно ощущаемого уровня громкости (УГ) от частоты сигнала для некоторого уровня звукового давления L. Например, при L=75 дБ, проведя параллельно оси абсцисс прямую, получим ее пересечения с различными изофонами. В этих точках УГ такой же, как и на частоте 1 кГц той же изофоны. Из каждой точки пересечения проводим вертикаль до уровня, равного УГ (в фонах) той же изофоны (УЗД этой изофоны на частоте 1 кГц). Совокупность полученных точек и дает искомую АЧХ для L=75 дБ. Семейство АЧХ органа слуха при различных L показано на рис.1,6.

Входным сигналом для органа слуха являются звуковые колебания, а результат - ощущение громкости и высоты тона. В связи с этим удобно использовать следующую модель слуха, чисто формальную, но полезную для наших целей. Представим орган слуха в виде последовательности акустического фильтра (АФ), в котором сосредоточены частотные свойства слуха, и некоего частотно-независимого преобразователя звукового давления (ЗД) в ощущение громкости. Тогда семейство АЧХ акустического фильтра точно совпадает с рис.1,б, только по оси ординат отложен не УГ в фонах, а УЗД на выходе АФ в децибелах. Преобразователю остается перевести УЗД в децибелах в УГ в фонах в соотношении один к одному. Результирующая АЧХ системы фильтр-преобразователь идентична показанной на рис.1,б. В такой модели удобно рассматривать интересующие нас частотные свойства слуха, поскольку она позволяет обойтись без единицы уровня громкости "фон" и оперировать только с децибелами.

Коэффициент передачи K (f, L) акустического фильтра при частоте f и УЗД L (отношение выходного ЗД к входному) на частоте 1 кГц постоянен и равен единице. Частотные зависимости K (f, L) для различных L показаны на рис.1,в. Они получены из рис.1,б сдвигом его кривых в вертикальном направлении до совпадения ординат кривых, отвечающих частоте 1 кГц.

Кривые на рис.1,в представляют собой естественные АЧХ слуха. Их вид соответствует известному факту, что с уменьшением интенсивности звука чувствительность к низкочастотным колебаниям падает. При изменениях интенсивности орган слуха "автоматически переключается" с одной АЧХ на другую, но мы этого не замечаем, пока воспринимаемые звуки относятся к естественным, привычным сигналам. Например, звучание рояля правильно идентифицируется, независимо от того, находится ли слушатель вплотную к нему или в дальнем конце просторного зала, где создаваемое ЗД намного меньше. В этом смысле ни одна АЧХ (рис.1,в) не является более "правильной", чем другие. В то же время любое искажение естественных АЧХ сразу же ощущается (это легко заметить, вложив в уши по комочку ваты).

Согласно кривым рис.1,в ухо воспринимает звуки в помещении, на открытой местности, в любой обстановке, и звучание кажется естественным, если обстановка естественная. Регулятор тембра звукоусилительного устройства трудно считать элементом естественной обстановки, поскольку натуральные сигналы, спектр которых преобразован РТ, уже не будут восприниматься так же, как в отсутствие РТ. Другими словами, АЧХ системы РТ-орган слуха, вообще говоря, существенно отличаются от естественных АЧХ (рис.1,в), поэтому и звучание в большинстве случаев далеко от естественного.

Нельзя ли найти такой закон регулирования тембра, который не искажал бы вид зависимостей на рис.1,в? Для этого от РТ требуется такая коррекция, которая бы кривую |для L=60 дБ переводила, например, в кривую L=80 дБ, кривую L=80 дБ - в кривую L=100 дБ и т.д.

Иначе говоря, под действием РТ система РТ - АФ должна переключаться с одной АЧХ на другую, подобно тому, как один АФ делает это в естественных условиях при изменениях УЗД. Изменив таким образом уровень НЧ и ВЧ относительно 1 кГц, можно было бы заставить слух поверить, что ему предлагается натуральное звучание, поскольку амплитуды спектральных компонентов сигнала находились бы в привычном соотношении, хотя и при другой громкости.

Для регулирования тембра важны не столько АЧХ слуха сами по себе, сколько отличия между ними (насколько изменяется АЧХ при переходе от одного УЗД к другому). Поэтому для ответа на поставленный выше вопрос рассмотрим приведенные на рис.2 частотные зависимости разности (в децибелах) между значениями K (f, L) для принимаемых за опорный УЗД уровней L, равных последовательно, например, 40, 60 и 100 дБ, и значениями K (f, L) для других УЗД. Эти зависимости следуют непосредственно из рис.1 ,в. Все кривые должны проходить через точку (1 кГц - 0 дБ), но некоторые из них для большей наглядности немного смещены по вертикали от своего действительного положения. Хорошо заметно, что они имеют сходный характер в широком диапазоне интенсивностей звука, что упрощает искомый закон коррекции. По сути, рис.2 показывает, какими должны бы быть изменения АЧХ системы РТ-АФ при регулировках тембра, сохраняющих естественность звучания.

Рассмотрим для примера, каковы изменения АЧХ системы РТ-АФ при взаимодействии с органом слуха традиционного РТ низких частот , асимптотическая ЛАЧХ которого горизонтальна от нулевой частоты до частоты перехода fa (рис.3,а), после которой она убывает с наклоном -20 дБ/дек. в сторону высоких частот до частоты выравнивания fв. Так как РТ включен до АФ, а АЧХ последнего зависит от ЗД приходящего звука, то результирующая АЧХ системы РТ-АФ не определяется просто произведением коэффициентов передачи РТ и АФ (как в линейных системах), которое можно найти сложением соответствующих ординат графиков рис.2 и З,а (при логарифмическом масштабе умножение заменяется сложением). Так допустимо поступать только, чтобы представить приблизительный вид результирующей АЧХ и при небольшой глубине регулирования.

При точном расчете необходимо принимать во внимание не только форму АЧХ, но и отвечающий ей УЗД. Для этого каждую кривую рис.2 нужно сместить по вертикали на величину, равную разности УЗД между нею и опорной АЧХ, служащей началом отсчета. Тот же результат, показанный на рис.3,6 штриховыми линиями, следует также и из рис.1 ,б, если построить зависимости от f разности УГ между опорной АЧХ и АЧХ для других УЗД.

Получим частотные зависимости (штриховые кривые на рис.3,б) относительного уровня выходного сигнала АФ для различных L (без РТ). Очевидно, что ЗД на выходе АФ равно К(ЩР1_, где Р1. - ЗД сигнала на входе АФ, УЗД которого равен L. В качестве опорного уровня для рис.3 взят УЗД L=60 дБ, создаваемый на входе АФ в отсутствии РТ (ему соответствует ЗД, равное Р60).

В этих координатах легко построить результирующие относительные АЧХ системы РТ-АФ. Процедура заключается в нахождении кривых АЧХ, отвечающих уровням подъема сигнала регулятором тембра над исходным УЗД для различных частот, и затем - в нахождении значений, принимаемых этими кривыми для тех же частот (вспомогательные тонкие прямые на рис.3,б). Хорошо заметно, насколько сильно общие АЧХ при таком РТ (сплошные толстые ломаные линии на рис.3,б) отличаются от естественных. Нетрудно построить подобные АЧХ для других типов РТ и убедиться, что они тоже сильно искажают естественные АЧХ слуха.

По причине, о которой говорилось выше, рис.2 еще не дает непосредственно искомые АЧХ физиологического регулятора тембра. Чтобы получить последние, его кривые нужно привести к виду рис.3,б, как было сделано ранее, и затем провести построение, обратное рис.3,б, т.е. по результирующей АЧХ системы РТ-АФ (например, сплошная толстая кривая на рис.3,в, совпадающая по форме с кривой L=100 дБ на рис.2,б) получить АЧХ РТ. Процедура состоит в следующем:

  • найти точку пересечения общей АЧХ с какой-либо АЧХ АФ (штриховые линии). Ордината этой точки равна подъему УЗД на выходе системы РТ-АФ на данной частоте f;
  • найти пересечение вертикали, опущенной из этой точки, с горизонталью, проходящей на уровне ЗД, соответствующем той же АЧХ. В результате получим точку, дающую подъем УЗД регулятором тембра на входе АФ, вызывающий данный подъем УЗД на выходе системы РТ-АФ. Совокупность полученных точек и дает искомую АЧХ РТ (штрихпунктирная линия на рис.3,в). По виду она похожа на АЧХ АФ, но с меньшей кривизной на низких частотах.

Можно показать, что РТ с АЧХ вида рис.3,в (штрихпунктирная линия) переводит АЧХ АФ для любого значения УЗД в АЧХ, близкую к АЧХ АФ некоторого более высокого (относительно взятого) значения УЗД. Поэтому общие АЧХ такого РТ вместе с органом слуха близки к естественным.

Таким образом, семейство АЧХ физиологического РТ будет напоминать рис.2, только линии должны иметь меньшую кривизну. Схема пассивного РТ показана на рис.4,а, семейство его АЧХ в диапазонах НЧ и ВЧ для положений переключателя SA1 "0"-"3" - на рис.4,6.

Характерными отличиями предлагаемого способа регулирования тембра от существующих, как видно из рис.3,в, 4,6, являются:

  • формирование АЧХ на низких частотах, прогнутой к оси абсцисс (наклон с уменьшением частоты плавно возрастает), в то время как известные РТ имеют на НЧ прямо противоположную АЧХ, выпуклую в сторону от оси абсцисс (наклон с уменьшением частоты убывает);
  • изменение АЧХ одновременно и согласованно на всех частотах НЧ (и отдельно) ВЧ диапазонов при любой глубине регулирования. В традиционных РТ изменение формы АЧХ охватывает часть диапазона;
  • изменяющийся наклон АЧХ в зависимости от глубины регулирования. В большинстве РТ наклон АЧХ фиксирован,
  • изменяются лишь частоты перехода;
  • наклон АЧХ в диапазоне 250 Гц-1 кГц при самых глубоких регулировках не достигает 20 дБ/дек. (такое или большее значение возможно только на более низких частотах). В традиционных РТ наклон АЧХ имеет как раз такую величину (20 дБ/дек.), т.е. слишком велик с точки зрения естественности звучания;
  • быстрое, но не очень большое изменение АЧХ на частотах выше 1 кГц и выход на насыщение уже при f=2...4 кГц.

Вследствие приведенных выше отличий известные РТ либо создают недостаточный УГ на низкочастотном крае звукового диапазона, либо избыточный подъем на частотах 250 Гц-1кГц, что приводит к излишне "выпуклому" звучанию на этих частотах. На ВЧ формируется подъем или спад до частот, намного больших 2-4 кГц, а это "режет" слух и значительно ухудшает естественность звучания.

Регулятор обеспечивает только подъем АЧХ, так как в большинстве случаев этого вполне достаточно . При желании его можно дополнить звеньями, обеспечивающими спад АЧХ. Характеристики этих звеньев должны быть симметричными кривым рис.4,б относительно линейной АЧХ и располагаться ниже ее в соответствии с рис.2.

Для реализации в НЧ диапазоне наклона меньше 20 дБ/дек. и его возрастания с понижением частоты применено лестничное включение RC-цепочек. Тембр НЧ регулируют дискретно переключателем SA1, а ВЧ - плавно потенциометром R15. Подстроечным резистором R14 устанавливают желаемую максимальную величину подъема ВЧ. НЧ регулятор имеет четыре положения, из которых одно нейтральное. Число ступеней регулирования можно увеличить добавлением дополнительных лестничных звеньев на промежуточные АЧХ для более плавной регулировки. Но уже этот упрощенный вариант поможет оценить преимущества предлагаемого способа регулирования по сравнению с известными РТ и даже несложными средствами достичь значительного улучшения качества звуковоспроизведения, если эти средства базируются на природных закономерностях и свойствах человеческого слуха.

Как и любой пассивный РТ, схема вносит значительное затухание, ослабляя сигнал на частоте 1 кГц примерно в 15 раз. Для компенсации этого необходимо совместно с ней применять соответствующий каскад усиления. Предшествующий каскад должен иметь возможно более низкое выходное сопротивление (не более 600 Ом), а входное сопротивление последующего каскада должно быть не менее 50-100 кОм. Нестандартные величины сопротивлений в схеме получают соединением нескольких резисторов. Желательно подобрать номинал элементов НЧ звеньев с точностью не хуже 2-3%.

Следует предостеречь от попыток сформировать АЧХ типа рис.4,б с помощью эквалайзера. Как показывает опыт,

субъективное впечатление сильно зависит от хода АЧХ РТ в области максимальной чувствительности слуха (5002000 Гц). Октавный эквалайзер не обеспечит правильную АЧХ. Для этого необходимо несколько полос регулирования в данном узком диапазоне. Возможно, это можно сделать с помощью третьоктавного (тридцатиполосного) эквалайзера. Но именно регулировать тембр (изменять в течение разумного промежутка времени УГ на НЧ или ВЧ по определенному закону) эквалайзером практически невозможно не только, как уже упоминалось, из-за крайнего неудобства, но и просто потому, что требуемую АЧХ "на глаз" или "на слух" получить сложно. Лучше использовать специально предназначенный для этой цели РТ, задающий нужную АЧХ сразу во всем диапазоне частот регулирования.

Регулирование тембра таким способом делает звучание на НЧ глубоким и сочным, тогда как обычные РТ делают его тусклым и подчеркивают отдельные частотные группы. На ВЧ звучание становится свежим и внятным, а не сухим и безжизненным, как у обычных РТ. В результате повышается прозрачность и разборчивость звуковой картины по сравнению с существующими РТ, улучшается восприятие в равной степени симфонической, эстрадной музыки и речи (не нужен переключатель "речь-музыка"). Указанные отличия, разумеется, появляются тогда, когда регуляторы РТ находятся в положениях, отличных от нейтральных.

Автоматически создается "эффект присутствия", с которым по естественности не идут ни в какое сравнение звуковые образы, получаемые с помощью известных способов реализации такого эффекта . Ведь регулирование происходит по закону изменения тембра сигнала при приближении слухового объекта.

Применение такого способа регулирования тембра оправдано, прежде всего, в высококачественной стационарной аппаратуре, эксплуатируемой в конкретном помещении прослушивания. В трактах цифровой обработки сигнала требуемый закон изменения коэффициента передачи РТ от частоты удобно реализовать чисто программным методом.

Литература:

1. Блауэрт Й. Пространственный слух.-М.: Энергия, 1979.

2. Сухов Н. Е., Бать С. Д., Колосов В. В., Чупаков А. Г. Техника высококачественного звуковоспроизведения.- К.: Техника, 1985.

3.Тарасов В. Пассивный регулятор тембра//Радио.- 1989.-№9.R

Предистория:
Строя домашнюю аудиосистему, столкнулся с трудностями. Одна из них - мой ламповый усилитель мощности при подключении к источнику «напрямую» даёт скучный, зажатый звук. Без «верхов» и «низов», одна выпяченная нижняя середина. Причём кинозвук выдаёт хороший, а мою музыку (black metal) играет плохо.

Очевидно, что требуется тонкомпенсация. Покупка проблему, в общем, решила, но качество звука (в целом) ухудшилось. Предусилитель отправился пылиться на антресоли.

Решил использовать в своей системе вместо тонкомпенсации темброблок.
Есть китайские, уже собранные, например , на двух 6н1п и кенотроне:

Но я взял в России, с сайта , этот набор - ламповый темброблок-предусилитель на двойном триоде 6н2п-ев.

За 4000 рублей я получил (все детали новые):

1100+1100 рублей - Два набора деталей для сборки двух моно каналов.
1000 рублей - ТАН 15-01, тороидальный силовой анодно-накальный трансформатор.
130 рублей - Плата блока питания.
270 рублей - Дроссель Д15Н (50мА, 10Гн).
400 рублей - пересылка (из Питера в Новосибирск).

Содержимое посылки:


Крупный план на комплектующие блока питания:


Дроссель, и два двойных триода 6н2п-ев - 1972 и 1976 года выпуска - что странно. Думал, будут одного года. А эти отличаются конструктивно даже на глаз:


(P.S : Автор написал, что у него все лампы 1976 года. Моя 1972 года затесалась к нему в набор неизвестным образом, и он положил её мне не нарочно. Предложил пока послушать так. Бесплатную замену ламп не предложил. За отсутствующие радиодетали не извинился. Вообще, продавец никаких вежливых слов («спасибо», «здравствуйте», «до свиданья») в переписке не употребляет, наверное, по принципиальным соображениям).

Платки предусилителя, два моно канала:


Набор деталей № 1:


Набор деталей № 2:


«Манускрипт» (ксероксная копия в A4) с рукописными помарками, которые я до конца расшифровать не смог. Просто оцените уровень исполнения:


Почти спаянные платы (сразу видны отличия от исходной фотографии на сайте - разделительные конденсаторы и ламповые панельки):


Усилитель собрал на макетке (прошу прощения за качество фотографий):




Качество звучания:

Среднее.

Но темброблок, как мне показалось, рассчитан не совсем оптимально для высококачественных акустических систем. Немного «узковато», что ли.

Регулировка в пределах: ±8dB.
НЧ: 300 Hz.
ВЧ: 3 kHz.

полоса: 20-20000Гц. (±0.3dB).
КНИ: 0,05%.
out: 2V、-максимальное 20V или более.

Из-за этого регулировка происходит в ограниченном диапазоне, что хорошо слышно.

Мне бы хотелось регулировку по НЧ: 100 Hz и ВЧ: 10 kHz , а может, даже и шире.
Продавец сообщил, что схема , и устраивает многих.

Предложил по низким частотам заменить конденсаторы C3, вместо исходных 15 нФ поставить 10 нФ, как у Манакова.

По высоким частотам предложил конденсатор С1 на 1 нФ (по схеме у Манакова, у Матюшина C2) изменить в сторону уменьшения.

Достоинства:

Довольно недорого.

Простая сборка.

Недостатки:

Нужно два моноканала для стерео варианта, что увеличивает неудобство регулировки, и в два раза количество «крутилок».

Инструкция могла бы быть и поаккуратнее.

Переменные резисторы использованы самые обыкновенные, с характеристикой «B», поэтому тембры регулируются не плавно, а резко, скачком.

Комплектные радиодетали в наборе самые дешёвые.

В наборе отсутствовало 4 резистора. Радиолампы были не парные.

Схемы сборки нет, поэтому я не смог её правильно собрать, пока самостоятельно не нашёл ошибку в нанесённой на плату разметке.

Это оказалась колодка «на выход» сзади. Она имеет обратную полярность по сравнению с другими колодками на плате:

В общем, схема, предложенная Матюшиным, менее удачная, чем схема Манакова.

У Манакова схема намного проще, усиление меньше (что хорошо), так как у Матюшина оно избыточно.

Кроме того, схема Матюшина требует трёх дорогостоящих разделительных конденсаторов на канал, взамен одного у Манакова.

P.S.
Решил сделать из темброблока Матюшина темброблок Манакова. По схеме удаляем следующие элементы:


Получаем такой вид платы:


Наиболее сильно влияющим на качество звука этого предусилителя является разделительный конденсатор и конденсатор C2 в темброблоке. Я поставил бумаго-масляный К40У-2 (0,1мкФ 350В) вместо плёночного Wima, потому что не нашёл ничего более подходящего. На C2 нужно ставить или высоковольтный керамический, или слюду. Я поставил СГМ-1.

Качество звука по сравнению с исходной схемой сильно возросло, но конденсатор К40У-2 начинает хорошо звучать только после своего «прогрева» (не менее получаса). Чем это вызвано, не знаю, но факт.

P.P.S.
К40У-2 поменял на полипропиленовый тайваньский :


Звук по сравнению с К40У-2 изменился - на моём блэк металле «середина» стала более динамичной и жёсткой. Но вместе с тем звук стал менее «певучим» и «душевным» на рок балладах и т.д.

P.P.P.S.
Лампу 6Н2П-ЕВ можно заменить на лампу 6Н1П-ЕВ без изменения в схеме - просто вытащил одну и вставил другую (как видите, ещё зашунтировал электролиты в анодах плёночными конденсаторами 1мкф 250В, разницы не услышал, но пусть будут):


Единственная разница, которую я услышал - 6Н1П-ЕВ немного тише играет. Ну и внутри они по конструкции разные:


P.P.P.P.S.
В результате моих варварских, «методом тыка», экспериментов пала жертвой одна из двух ламп 6Н2П-ЕВ. Что интересно, сгорела лампа более новая, 1976 года.

Следите за обновлениями.

Планирую купить +12 Добавить в избранное Обзор понравился +26 +53

Что у меня имеется на данный момент:

1. Сам усилитель:

2. Естественно, блок питания оконечного усилителя:

При настройке УМ я использую устройство, которое обеспечивает безопасное подключение трансформатора УМ к сети (через лампу). Оно выполнено в отдельной коробочке со своим шнуром и розеткой и при необходимости подключается к любому устройству. Схема приведена ниже на рисунке. Для этого устройства требуется реле с обмоткой на 220 АС и с двумя группами контактами на замыкание, одна кнопка без фиксации (S2), одна кнопка с фиксацией или включатель(S1) . При замыкании S1 трансформатор подключается к сети через лампу, если все режимы УМ в норме, при нажатии на кнопку S2 реле через одну группу контактов замыкает лампу и подключает трансформатор напрямую к сети, а вторая группа контактов, дублируя кнопку S2 постоянно подключает реле к сети. В таком состоянии устройство находится до момента размыкания S1, или уменьшения напряжения меньше напряжения удержания контактов реле (в том числе и КЗ). При следующем включении S1 трансформатор опять подключается к сети через лампу, и так далее…

Помехозащищённость различных способов экранировки сигнальных проводов

3. Еще имеем собранную защиту АС от постоянного напряжения:

В защите реализованы:
задержка подключения АС
защита от постоянки на выходе, от КЗ
управление обдувом и отключение АС при перегреве радиаторов

Налаживание:
Предположим, всё собрано из исправных и проверенных тестером транзисторов и диодов. Изначально поставьте движки подстроечников в следующие положения: R6 — посередине, R12, R13 — в верхнее по схеме.
Стабилитрон VD7 поначалу не запаивайте. На ПП защиты разведены цепи Цобеля, необходимые для устойчивости усилителя, если они уже имеются на платах УМЗЧ, то их паять не нужно, а катушки можно заменить перемычками. В противном же случае катушки мотаются на оправке диаметром в 10 мм, например, хвосте сверла — проводом диаметром 1 мм. Длина получившейся намотки должна быть такой, чтобы катушка вставала в отведённые для неё на плате отверстия. После намотки рекомендую пропитать проволоку лаком или клеем, например, эпоксидкой или БФом — для жёсткости.
Провода, идущие от защиты к выходам усилителя, пока соедините с общим проводом, отключив от его выходов, разумеется. Необходимо соединить с «Меккой» УМЗЧ земляной полигон защиты, обозначенный на ПП пометкой «Main GND», иначе защита не будет правильно работать. Ну и, разумеется, площадки GND рядом с катушками.
Включив защиту с подключенными АС, начинаем уменьшать сопротивление R6 до щелчка реле. Открутив ещё один-два оборота подстроечника, отключаем защиту от сети, включаем две АС в параллель на любой из каналов и проверяем — сработают ли реле. Если не сработают — то всё работает как задумано, при нагрузке 2 Ома усилители к ней не подключатся, во избежание повреждения.
Далее отключаем провода «От УМЗЧ ЛК» и «От УМЗЧ ПК» от земли, включаем всё снова и проверяем, сработает ли защита, если на эти провода подавать постоянное напряжение около двух-трёх вольт. Реле должны отключать колонки — будет щелчок.
Можно ввести индикацию » Защита», если подсоединить цепочку из светодиода красного цвета свечения и резистора в 10 кОм между землёй и коллектором VT6. Этот светодиод будет показывать неисправность.
Далее настраиваем термоконтроль. Терморезисторы одеваем в водонепроницаемую трубку (внимание! они не должны намокнуть в ходе теста!).
Часто бывает так, что у радиолюбителя нет терморезисторов, указанных на схеме. Подойдут два одинаковых из имеющихся, сопротивлением от 4,7 кОм, но в этом случае сопротивление R15 должно равняться удвоенному сопротивлению последовательно включенных терморезисторов. Терморезисторы должны иметь отрицательный коэффициент сопротивления (уменьшать его с нагревом), позисторы работают наоборот и тут им не место.Кипятим стакан воды. Даём ему минут 10-15 подостыть в спокойном воздухе и опускаем в него терморезисторы. Крутим R13 до погасания светодиода «Перегрев» — Overheat , который должен был гореть изначально.
Когда вода остынет градусов до 50 (это можно ускорить, как именно — большой секрет) — крутим R12, чтобы погас светодиод «Обдув» или же FAN On.
Запаиваем стабилитрон VD7 на место.
Если глюков от запайки этого стабилитрона не обнаруживается, то всё нормально, но было такое, что без него транзисторная часть работает безупречно, с ним же — не хочет подключать реле ни в какую. В таком случае меняем его на любой с напряжением стабилизации от 3,3 В до 10В. Причина — утечка стабилитрона.
При нагревании терморезисторов до 90*С должен загораться светодиод «Overheat» — Перегрев и реле отключат АС от усилителя. При некотором остывании радиаторов всё подключится обратно, но такой режим работы аппарата должен как минимум насторожить владельца. При исправном вентиляторе и не забитом пылью туннеле срабатывания термала наблюдаться не должно вообще.
Если всё нормально, паяем провода на выхода усилителя и наслаждаемся.
Обдув (его интенсивность) настраивается подбором резисторов R24 и R25. Первый определяет производительность кулера при включенном обдуве (максимум), второй — когда радиаторы лишь чуть тёплые. R25 можно исключить вообще, но тогда вентилятор будет работать в режиме ВКЛ-ВЫКЛ.
Если реле имеют обмотки на 24В, то их надо соединить параллельно, если же на 12 — то последовательно.
Замена деталей. В качестве ОУ можно применить почти любой сдвоенный дешёвый ОУ в СОИК8 (от 4558 до ОРА2132, хотя, надеюсь, до последнего не дойдёт), например, TL072, NE5532, NJM4580 и т.п.
Транзисторы — 2n5551 меняются на ВС546-ВС548, либо на наши КТ3102. BD139 заменим на 2SC4793, 2SC2383, либо на подобный по току и напряжению, возможно поставить хоть КТ815.
Полевик меняется на подобный применённому, выбор огромен. Радиатор для полевика не требуется.
Диоды 1N4148 меняются на 1N4004 — 1N4007 или же на КД522. В выпрямителе же можно поставить 1N4004 — 1N4007 или использовать диодный мостик с током 1 А.
Если управление обдувом и защита от перегрева УМЗЧ не нужны, то не запаивается правая часть схемы — ОУ, терморезисторы, полевик и т.д, кроме диодного мостика и фильтрующего конденсатора. Если у вас уже есть источник питания 22..25В в усилителе, то можно использовать и его, не забывая о токе потребления защиты около 0,35А при включении обдува.

Рекомендации по сборке и настройке УМЗЧ:
Перед началом сборки печатной платы следует выполнить относительно несложные операции с платой, а именно – просмотреть на просвет, нет ли малозаметных при обычном освещении замыканий между дорожками. Заводское производство не исключает производственных дефектов, к сожалению. Пайку рекомендуется осуществлять припоем ПОС-61 или подобным с температурой плавления не выше 200* С.

Вначале следует определиться с применяемым ОУ. Крайне не рекомендуется применение ОУ от Analog Devices – в данном УМЗЧ их характер звучания несколько отличается от задуманного автором, а излишне высокая скорость может привести к неустранимому самовозбуждению усилителя. Приветствуется замена ОРА134 на ОРА132, ОРА627, т.к. они обладают меньшими искажениями на ВЧ. То же самое относится к ОУ DA1 – рекомендуется использовать ОРА2132, ОРА2134 (в порядке предпочтения). Допустимо использование ОРА604, ОРА2604, но при этом искажений будет несколько больше. Конечно, можно поэкспериментировать с типом ОУ, но на свой страх и риск. УМЗЧ будет работать и с КР544УД1, КР574УД1, но уровень смещения нуля на выходе увеличится и вырастут гармоники. Звук же…думаю, комментарии не нужны.

С самого начала монтажа рекомендуется попарно отобрать транзисторы. Это не необходимая мера, т.к. усилитель будет работать и при разбросе 20-30%, но если вы ставите цель получить максимальное качество, то уделите этому внимание. Особо следует выделить подбор Т5, Т6 – их лучше всего использовать с максимальным Н21э – это снизит нагрузку на ОУ и улучшит его выходной спектр. Т9, Т10 также должны иметь как можно более близкое усиление. Для транзисторов защёлки подбор необязателен. Выходные транзисторы – если они из одной партии, можно не подбирать, т.к. культура производства на Западе несколько выше привычной нам и разброс укладывается в 5-10%.

Далее, вместо выводов резисторов R30, R31 рекомендуется впаять отрезки провода длиной пару сантиметров, поскольку потребуется подбор их сопротивлений. Начальное значение в 82 Ом даст ток покоя УН примерно 20..25 мА, статистически же получалось от 75 до 100 Ом, это сильно зависит от конкретных транзисторов.
Как уже отмечалось в теме по усилителю, использовать транзисторные оптроны не стоит. Поэтому ориентироваться стоит на АОД101А-Г. Импортные диодные оптопары не опробовались из-за недоступности, это временно. Наилучшие результаты получаются на АОД101А одной партии для обеих каналов.

Помимо транзисторов, попарно стоит подобрать комплементарные резисторы УНа. Разброс не должен превышать 1%. Особо тщательно нужно подобрать R36=R39, R34=R35, R40=R41. Для ориентира отмечу, что с разбросом более 0,5 % на вариант без ООС лучше не переходить, т.к. будет рост чётных гармоник. Именно невозможность достать точные детали в своё время остановила эксперименты автора по безООСному направлению. Введение же балансировки в цепь токовой ОС решает проблему не полностью.

Резисторы R46, R47 можно запаять по 1 кОм, но если есть желание более точно настроить токовый шунт, то лучше поступить так же, как и с R30, R31 – впаять проводки для подпайки.
Как выяснилось по ходу повторения схемы, при некотором стечении обстоятельств возможно возбуждение в цепи слежения ЭА. Это проявлялось в виде неконтролируемого дрейфа тока покоя, а особенно – в виде колебаний частотой около 500 кГц на коллекторах Т15, Т18.
Необходимые коррективы изначально заложены в эту версию, но проверить осциллографом всё же стоит.

Диоды VD14, VD15 вынесены на радиатор для температурной компенсации тока покоя. Это можно сделать, подпаяв провода к выводам диодов и приклеив их к радиатору клеем типа «Момент» или подобным.

Перед первым включением необходимо тщательно отмыть плату от следов флюса, просмотреть на отсутствие замыканий дорожек припоем, убедиться, что общие провода подсоединены к средней точке конденсаторов блока питания. Также настоятельно рекомендуется использовать цепь Цобеля и катушку на выходе УМЗЧ, на схеме они не показаны, т.к. автор считает их применение за правило хорошего тона. Номиналы этой цепи обычны – это последовательно включённые резистор 10 Ом 2 Вт и конденсатор К73-17 или подобный ёмкостью 0,1 мкФ. Катушка же наматывается лакированным проводом диаметром 1 мм на резисторе МЛТ-2, число витков – 12…15 (до заполнения). На ПП защиты эта цепь разведена полностью.

Все транзисторы ВК и Т9, Т10 в УН – крепятся на радиаторе. Мощные транзисторы ВК устанавливаются через слюдяные прокладки и для улучшения теплового контакта используется паста типа КПТ-8. Околокомпьютерные же пасты применять не рекомендуется – высока вероятность подделки, да и тесты подтверждают, что зачастую КПТ-8 – это лучший выбор, к тому же очень недорогой. Чтобы не влететь на подделку – используйте КПТ-8 в металлических тюбиках, наподобие зубной пасты. До этого пока ещё не добрались, к счастью.

Для транзисторов в изолированном корпусе использование слюдяной прокладки необязательно и даже нежелательно, т.к. ухудшает условия теплового контакта.
Последовательно с первичной обмоткой сетевого трансформатора обязательно включите лампочку на 100-150Вт – это спасёт от многих неприятностей.

Закоротите выводы светодиода оптрона D2 (1 и 2) и включите. Если всё собрано правильно, то потребляемый усилителем ток не должен превышать 40 мА (выходной каскад будет работать в режиме В). Постоянное напряжение смещения на выходе УМЗЧ не должно превышать 10 мВ. Размокните светодиод. Ток, потребляемый усилителем, должен возрасти до 140…180 мА. Если он возрастает больше, то проверьте (рекомендуется делать это стрелочным вольтметром) коллекторы Т15, Т18. Если всё работает верно, там должны быть напряжения, отличающиеся от питающих примерно на 10-20 В. В случае, когда это отклонение меньше 5 В, а ток покоя слишком большой – попробуйте поменять диоды VD14, VD15 на другие, очень желательно, чтобы они были из одной партии. Ток покоя УМЗЧ, если он не укладывается в диапазон от 70 до 150 мА, можно установить также подбором резисторов R57, R58. Возможная замена для диодов VD14, VD15: 1N4148, 1N4001-1N4007, КД522. Либо же снизьте протекающий через них ток одновременным увеличением R57, R58. В мыслях была возможность реализации смещения такого плана: вместо VD14, VD15 использовать переходы БЭ транзисторов из тех же партий, что и Т15, Т18, но тогда придётся существенно увеличивать R57, R58 – до полной настройки получившихся токовых зеркал. При этом вновь вводимые транзисторы должны быть в тепловом контакте с радиатором, как и диоды, вместо которых они ставятся.

Далее нужно установить ток покоя УНа. Оставьте усилитель включенным и через 20-30 минут проверьте падение напряжения на резисторах R42, R43. там должно падать 200…250 мВ, что означает ток покоя 20-25 мА. Если он больше, то необходимо снизить сопротивления R30, R31, если меньше-то, соответственно, увеличить. Может случиться такое, что ток покоя УНа будет несимметричным – в одном плече 5-6мА, в другом 50мА. В этом случае выпаяйте транзисторы из защёлки и продолжайте пока без них. Эффект не нашёл логического обьяснения, но исчезал при замене транзисторов. Вообще – в защёлке нет смысла использовать транзисторы с большим Н21э. Достаточно усиления от 50.

После настройки УНа снова проверяем ток покоя ВК. Его следует мерить по падению напряжения на резисторах R79, R82. Току 100 мА соответствует падение напряжения 33 мВ. Из этих 100 мА около 20 мА потребляет предконечный каскад и до 10 мА может уходить на управление оптроном, поэтому в случае, когда на этих резисторах падает, например, 33 мВ – ток покоя составит 70…75мА. Уточнить его можно по замерам падения напряжения на резисторах в эмиттерах выходных транзисторов и последующего суммирования. Ток покоя выходных транзисторов от 80 до 130 мА можно считать нормальным, при этом заявленные параметры полностью сохраняются.

По результатам замеров напряжений на коллекторах Т15, Т18 можно сделать вывод о достаточности управляющего тока через оптрон. Если Т15, Т18 почти в насыщении (напряжения на их коллекторах отличаются от питающих менее чем на 10 В) – то нужно уменьшить номиналы R51, R56 примерно в полтора раза и провести повторный замер. Ситуация с напряжениями должна измениться, а ток покоя – остаться преждним. Оптимальным считается случай, когда напряжения на коллекторах Т15, Т18 равны примерно половине питающих напряжений, но вполне достаточно отклонения от питания на 10-15В, это резерв, который нужен для управления оптроном на музыкальном сигнале и реальной нагрузке. Резисторы R51, R56 могут нагреваться до 40-50*С, это нормально.

Мгновенная мощность в самом тяжёлом случае – при выходном напряжении близком к нулю – не превышает 125-130 Вт на транзистор (по техусловиям допускается до 150Вт) и действует она практически моментально, что не должно повести за собой каких-либо последствий.

Срабатывание защёлки можно определить субьективно-по резкому снижению выходной мощности и характерному «грязному» звучанию, проще говоря – в АС будет сильно искажённый звук.

4. Предварительный усилитель и его БП

Материал по Высококачественному ПУ:

Служит для тембровой коррекции и тонкомпенсации при регулировании громкости. Возможно использование для подключения наушников.

В качестве темброблока использован хорошо себя зарекомендовавший ТБ Матюшкина. Он имеет 4хступенчатую регулировку НЧ и плавную регулировку ВЧ, а его АЧХ хорошо соответствует слуховому восприятию, во всяком случае, классический мостовой ТБ, (который тоже может быть применён), слушателями оценивается ниже. Реле позволяет при необходимости отключить всякую частотную коррекцию в тракте, уровень выходного сигнала настраивается подстроечным резистором по равенству усиления на частоте 1000 Гц в режиме с ТБ и при обходе.

Расчётные характеристики:

Кг в диапазоне частот от 20 Гц до 20 кГц — менее 0,001% (типовое значение порядка 0,0005%)

Номинальное входное напряжение, В 0,775

Перегрузочная способность в режиме обхода ТБ — не менее 20 дБ.

Минимальное сопротивление нагрузки, при котором гарантируется работа выходного каскада в режиме А — при максимальном размахе выходного напряжения «от пика до пика» 58В 1,5 кОм.

При использовании ПУ только с проигрывателями СД допустимо снижение напряжения питания буфера до +\-15В потому как диапазон выходного напряжения таких источников сигнала заведомо ограничен сверху, на параметрах это не отразится.

Полный комплект плат состоит из двух каналов ПУ, РТ Матюшкина (одна плата на оба канала) и блока питания. Печатные платы разработаны Владимиром Лепёхиным.

Результаты измерений: