Самодельные широкополосные симметрирующие дроссели и трансформаторы на ферритовых трубках. Антенные согласующие устройства. Антенные тюнеры. Схемы Согласующий трансформатор для антенны дмв

27.07.2020 Советы 

Сегодня, по поводу воскресенья, был в гостях. Недалеко, в почти такой же деревне как моя. И увидел насколько труднее быть радиолюбителем без подсказки более опытных товарищей. Это я не про себя. Несколько нескромно, но моя заслуга в предлагаемом материале в основном перевод с английского. Потому что всё что я предложу известно давно и не раз опубликовано в наших журналах "Радио". Акцент в этот раз будет стоять на слове "просто". Без заумных коэффициентов укорочения и слов типа "импеданс". И намоточные данные катушек приведу. Очень хочется помочь тем, кому по жизни не пришлось слушать курс радиотехники в институте или техникуме. Поразмыслив, решил просто найти проверенную конструкцию.

Конечно же я говорю про "действующих" радиолюбителей, тех, кто пытается проводить радиосвязи несмотря на отсутствие возможностей использовать хорошие антенны. Часто радиолюбителю достаётся место жительства с ограниченным пространством вокруг. Антенна "длинный провод", являясь самой простой, требует пространства (ну раз "длинный") Но бывает что даже полуволновый LW не помещаются по длине. Иногда это только несколько метров от балкона до ближайшего дерева. Тогда используются антенны из провода случайной длины. Отсутствие какого-либо согласования сводит к нолю 40 ватт от UW3DI. Вместе с тем известно, что можно заставить работать даже сильно укороченную антенну. И все знают волшебное слово для этого - "согласующее", и большая часть радиолюбителей его так и воспринимает - как согласователь сопротивлений, точнее импедансов:-(а обещал этого слова не говорить).
Note: О самих антеннах. Есть несколько советов, которые могут улучшить ситуацию. Random-wire это не полная свобода, а вынужденная мера, поэтому учитывать некоторые моменты всё-таки следует. Понятно, что если антенна получается укороченной, то растягивать её нужно в направлении куда возможна её максимальная длина. Изгибы и повороты нежелательны, но не критичны. До тех пор пока провод антенны не пойдёт в обратном направлении. Смысла в таком дополнительном отрезке нет. Высота подвеса должна быть максимально возможной. Если есть возможность поднять горизонтальную часть антенны вверх, то это надо делать сразу при "выходе" проводника наружу. А далее растягивать на всё доступное пространство. "Проход" через окно или стену лучше сделать через фарфоровую (или ВЧ изолятора) трубку. Сам провод должен быть минимального диаметра чтобы он был максимально лёгкий, но выдерживать свой вес. К тому же тонкий провод почти не заметен. Это может быть плюсом с точки зрения хороших отношений с соседями .

Предлагаемая конструкция (или две, если считать SWR meter) - это трансформатор случайного сопротивления случайной длины провода в нужные 50 или 75 ом в зависимости от конструкции передатчика. Подвесив в соответствии со своими возможностями "верёвку" в положении при котором её длина максимальна, а высота от земли на пределе возможного, получаем задачу со множеством неизвестных. Вернее с одним неизвестным, зависящим от множества других: проводимость земли, расстояние до ближайших физических объектов, изменение высоты подвеса по длине антенны и т.д. Никогда нельзя сказать точно какой импеданс и реактивность будет иметь нижний конец провода. В этом состоит основная причина ошибок не очень опытных радиолбителей. Они пытаются угадать сопротивление, применить трансформатор на ферритах или "бинокле" и привести всё к сопротивлению фидера. Между тем главное - не применять фидер и сделать антенну частью настроенного контура. Её импеданс по прежнему остаётся величиной неизвестной. Но есть способ методом последовательных приближений (научного тыка:-) приблизиться к эффективному использованию того что есть. В случае когда мы подключаем антенну (любую) к трансиверу с автотюнером посредством кабеля, тюнер настраивается на волновое сопротивление кабеля и следующей за ним, как следующий вагон в электричке, антенны. Если длина кабеля определена заранее как волновой повторитель, то тюнер точно будет настраивать выход передатчика на сопротивление антенны. Но не факт, что он при этом "увидит" нужное сопротивление антенны. А если оно еще и неизвестно какое - тогда и результат будет никаким.
Разница между этим, и тем, что будет описано ниже состоит как раз в том что в нашем случае мы действительно "введём" антенну и часть нашего устройства в резонанс, добившись максимального излучения антенны, и при этом добъёмся равенства сопротивлений передатчик-антенна (условия при котором в антенну попадет максимально возможная часть энергии). К сожалению, законов физики никто не отменял, и для использования этого (каждого конкретного) случайной длины провода на различных диапазонах интервала перестройки конденсатора переменной ёмкости (и точки отвода катушки) будет недостаточно. Поэтому в конструкции Левиса МакКоя (Lewis G.McCoy) W1ICP, описанной в книге "ARRL Antenna Anthology", применяется система из базовой конструкции с подключаемыми внешними комбинациями индуктивностей, позволяющая трансформировать "всё во всё".
На фотографии устройство в сборе - со встроенным рефлектометром и две совокупности индуктивностей на разъёме. Как видно, самый главнй элемент - "крокодилы" на гибких проводниках. :-) Сразу следует предупредить о соблюдении необходимых мер предосторожности - на "горячем" конце контура может быть высокое напряжение. Не осуществляйте переключения при включенном передатчике. Это опасно в первую очередь для транзисторов выходного каскада. Ну и поберегите ваши пальцы - ВЧ ожог при не соблюдении этих рекомендаций гарантирован.
P.S. Одним из побочных (и очень неприятным) эффектом будет значительно более близкое расположение излучающего элемента к вашему организму, электронным приборам, которым оно, конечно же будет мешать, а так же возможность наводок на предварительные каскады вашего радио. Например, потребуется значительное улучшение защиты от ВЧ наводок микрофонного (или ACC входа при работе RTTY/PSK/SSTV)
А справа эквивалентные схемы включения для различных вариантов LW. Вариант А лучше использовать при длине провода антенны соизмеримой с длиной волны, варианты В и C для сильно укороченных антенн. Такая гибкая схема и реверсирование включения позволяет эффективно запитывать любые длины в диапазонах от 80 до 10 метров. Обратите внимание на слово "запитывать". Это не эквивалент слова "излучать". Хотя это всё равно лучший способ использования антенн LW не кратной полуволне длины.

Вот еще более простая эквивалентная схема идеи, которую я успешно использовал сразу после армии, еще не имея радиотехнического образования. Все сведения были почерпнуты из популярной книги "Радио - это очень просто" :-) Тогда моё радио состояло из Р-250 и армейского легендарного передатчика РСБ-5. Антенна, конечно же, длинный провод неизвестной длины из окна до дерева на другой стороне дороги. Согласно указанного выше источника, сопротивление паралельного колебательного контура изменяется от 0 в точке "земля" до неизвестного, но максимума в верхней точке. Подбирая точку включения антенны можно найти наилучшие условия - равенство сопротивления антенны и части контура:-), а вторая точка подключения - нижняя - подключение передатчика. И задача облегчается тем, что его выходное сопротивление известно - 50 ом. Стало быть она будет расположена значительно ниже по телу катушки контура:-) Это теперь я знаю, что это называется автотрансформатор:-)
Но как бы то ни было, если в хозяйстве сохранился вариометр и конденсатор переменной ёмкости от РСБ-5 (а конденсатор хорош тем, что имеет на оси переключатель, который при повороте более чем на 180 градусов подключает параллельно пластинам постоянную ёмкость), с использованием двух гибких проводников (выпотрошенная оплетка от любого кабеля) и тонкогубых "крокодилов", то это может быть использовано в качестве высокоэффективного автотрансформатора. Вернее двух автотрансформаторов. Но если есть желание повторить конструкцию один к одному, по автору, то продолжаю. Вот рисунок (схема) основной конструкции. Её основа - встроенный КСВ-метр и панель с контактной планкой (разъём одна "мама" три "папы") на пять контактов. В этом месте я бы сделал отступление от конструкции и использовал керамические галетные переключатели типа тех, что стоят в UW3DI или аналогичных. С точки зрения удобства пользования (и сохранности формы катушек:-) несравненно лучше. Как я уже упоминал выше, при использовании одного или двух диапазонов от этого узла можно отказаться вовсе. И если у вас есть достаточно надёжный КСВ-метр, то встроенный также можно не делать. Но тем не менее, по автору всё выглядит так:

В варианте А работает чистый трансформатор с индуктивной связью, причём её величину изменить невозможно, что не очень хорошо для системы, перестраиваемой в широком диапазоне значений индуктивности и ёмкости. Настройка осуществляется путем циклический действий: подключение антенны, настройка контура С1L1 в резонанс по максимуму "показометра" напряжённости поля ("неонка" или индикатор поля), после этого подстройка входа - С2 по минимуму КСВ. Затем переподключение "крокодила" проводника антенны в другое место и снова настройки и сравнение результатов. Добившись самого хорошего результата, можно зафиксировать точку подключения к катушке краской, рисунком на бумажке:-) или записать номера витка. Может показаться неудобным, но после двух-трёх настроек смена диапазона будет проходить быстро.
В вариантах B и C связь с колебательным контуром, часть которого составляет наш провод неизвестной дины, представляет из себя автотрансформатор. Коммутация осуществляется подключением других планок с индуктивностями и перемычками. Ниже представлены схемы вариантов B и C. Как можно заметить, в схемах с индуктивностями конденсатор переменной ёмкости перемещается из одного конца индуктивности в другой.
В варианте B и С мы видим что это варианты нашего автотрансформатора с различными коэффициентами трансформации (с точки зрения сопротивлений, вариант С это вариант А наоборот). Конденсатор С1 с максимальной ёмкостью от 150 до 300 пф. Катушки L3 и L4 - индуктивности ответвителей в КСВ-метре и поэтому отдельно не рассматриваются. Данные катушек L1 и L2 ниже на рисунке и в тексте (так как они для различных диапазонов разные). Для диапазона 80 и 40 метров они выполнены бескаркасной бифилярной намоткой на изоляционных распорках проводом диаметром 1,5 мм (#14 на американский манер:-) с шагом 3 мм (8 витков на дюйм (25 мм) и диаметром 65 мм. Через один виток провод "продавливается" внутрь катушки для закрепления витков и облегчения подключения к ним "крокодила" . Катушки имеют соответственно 18 и 6 витков с пропусканием одного оборота между собой - вместо одного витка укладывается только его половина (см. рисунок и фото). Это достаточно трудоёмкая часть работы, но выполнить её нужно очень аккуратно, хорошенько натягивая провод и фиксируя витки.
Для диапазонов от 10 до 18 мгц катушки L1 и L2 бескаркасные диаметром 65 мм. L1 содержит 4 витка при длине намотки 36мм (с шагом 9 мм). L2 - один виток с таким же шагом. Она расплогается на расстоянии 13 мм от L1. В диапазонах от 21 до 28 мгц L1 имеет два витка, а L2 также имеет один виток такого же диаметра и на таком же расстоянии от L1.
Конечно же не обязательно повторять всё один к одному, можно использовать либо часть описанного, либо вообще сделать трансмаш неперестраиваемой нижней частью проводника однодиапазонной антенны, используя внешний КСВ метр. Но при настройке обязательно нужно использовать еще и индикатор напряженности поля. Пусть даже простейший - "неонку" или люминесцентную лампу. То есть секрет прост: используя два инструмента настройки можно получить и резонансную антенну и наилучший КСВ для антенны в виде провода случайной длины. Мне представляется что это очень эффективный способ улучшить качество связи в условиях полевых дней, экспедиций да и в повседневной работе с радио.

  • Назад
  • Вперёд

You have no rights to post comments Недостаточно прав для комментирования

Известный австралийский радиолюбитель Анедрей Михайлов (VK5MAV/9) в апреле снова едет в Коралловок море. IOTA OC265. Российская кампания, как и ранее, понемногу спонсирует и выпустит HAM plaque "Coral see OC265". На сайте "Most Wanted DX " есть рассказы о предыдущих экспедициях. С фотографиями.

  • Внук Буратино


    Проверяя еще раз выкладки по универсальной антенне для спутниковой связи нашёл вариант исполнения из коаксиального кабеля и на диапазон 435 мгц. Не правда ли очаровательно. Что-то среднее между антенной потерпевшего крушение на необитаемом острове и антенной собранной из пробкового дерева (пробки из винных бутылок). Но я уверен, что работает. И скорее всего параметры такие -же. :-) Только видно, что делал или сам столяр-краснодеревщик, или его сын Catterpiller... Или его внук Буратино:-)

    На самом деле решена одна из главных проблем при создании квадрифиляров. Если вы читали и смотрели на моём сайте описание этих антенн, то обращали внимание: если элементы не из толстых трубок, то механическая прочность конструкции никакая. На фото ниже моя антенна после падения на землю. Отмечу - на мягкую траву. Садовое покрытие у меня не хуже чем на ЭмиратСтадиум. А эту можно в багажнике возить:-) Такая же, только из железа, стоит на АО-7.

    Последние мои публикации, посвященные КВ антеннам, вызвали у многих читателей ряд вопросов о конструкции используемых в них трансформаторов и дросселей.

    Этот вопрос хорошо освещен в радиолюбительской литературе и многочисленных статьях и, казалось бы, не требует дальнейших комментариев.

    Самодельные широкополосные симметрирующие дроссели и трансформаторы на ферритовых трубках

    Ферритовые трансформаторы на ферритовых трубках выполняют сразу несколько функций: трансформируют сопротивление, симметрируют токи в плечах антенны и подавляют синфазный ток в оплетке коаксиального фидера. Наилучшим отечественным ферритовым материалом для широкополосных трансформаторов является феррит марки 600НН, но из него не изготавливали трубчатых сердечников...

    Сейчас в продаже появились ферритовые трубки зарубежных фирм с хорошими характеристиками,
    в частности FRR-4,5 и FRR-9,5, имеющие размеры dxDxL 4,5x14x27 и 9,5х17,5х35 соответственно. Последние трубки использовались в качестве помехо-подавляющих дросселей на кабелях, соединяющих системные блоки компьютеров с мониторами на электронно-лучевых трубках. Сейчас их массово заменяют на матричные мониторы, а старые выбрасывают вместе с ферритами.

    Рис.1. Ферритовые трубки FRR-9,5

    Четыре таких трубки, сложенные рядом по две, образуют эквивалент «бинокля», на котором можно разместить обмотки трансформаторов, перекрывающих все КВ диапазоны от 160 до 10 м. Трубки имеют скругленные грани, что исключает повреждения изоляции проводов обмоток. Трубки удобно скрепить вместе, обмотав широким скотчем.

    Из различных схем широкополосных трансформаторов я использовал простейшую, с раздельными обмотками, витки которых имеют дополнительную связь за счет плотной скрутки проводников между собой, что позволяет уменьшить индуктивность рассеяния и за счет этого повысить верхнюю границу рабочей полосы частот. Одним витком будем считать провод, продетый через отверстия обеих трубок «бинокля». Половиной витка - провод, продетый через отверстие одной трубки «бинокля». В таблицу
    сведены варианты трансформаторов, выполнимых на этих трубках.

    В таблицу сведены варианты трансформаторов, выполнимых на этих трубках.

    Число витков первичной обмотки

    Число витков вторичной обмотки

    Коэффициент трансформации напряжений

    Коэффициент трансформации сопротивлений

    Соотношения сопротивлений при источнике 50 Ом

    1 1 1:1 1:1 50:50
    1 1,5 1:1.5 1:2.25 50:112.5
    1 2 1:2 1:4 50:200
    1 2.5 1:2.5 1:6.25 50:312.5
    1 3 1:3 1:9 50:450
    1 3.5 1:3.5 1:12.5 50:625
    2 1 1:0.5 1:0.25 50:12.5
    2 1,5 1:0.75 1:0.56 50:28
    2 2 1:1 1:1 50:50
    2 2,5 1:1.25 1:1.56 50:78
    2 3 1:1,5 1:2,25 50:112,5
    2 3,5 1:1,75 1:3 50:150
    2 4 1:2 1:4 50:200
    2 4,5 1:2,25 1:5 50:250
    2 5 1:2,5 1:6,25 50:312.5
    2 5,5 1:2,75 1:7,56 50:378
    2 6 1:3 1:9 50:450
    2 6,5 1:3,25 1:10,56 50:528
    2 7 1:3,5 1:12,5 50:625

    Как видим, получается весьма широкий выбор соотношения сопротивлений. Трансформатор с коэффициентом 1:1 - подобно дросселю симметрирует токи в плечах антенны и подавляет синфазный ток в оплетке кабеля питания. Прочие трансформаторы в дополнение к этому еще и трансформируют сопротивления. Чем руководствоваться при выборе числа витков? При прочих равных условиях трансформаторы с одновитковой первичной обмоткой имеют примерно в четыре раза более высокую нижнюю границу полосы пропускания по сравнению с двухвитковой, но и верхняя частота полосы пропускания и них значительно выше. Поэтому для трансформаторов, используемых от диапазонов 160 м и 80 м лучше использовать двухвитковые варианты, а от 40 м и выше - одновитковые. Использовать целочисленные значения числа витков предпочтительно, если желательно сохранить симметрию и разнести выводы обмоток на противоположные стороны «бинокля».

    Чем выше коэффициент трансформации, тем труднее получить широкую полосу пропускания, поскольку возрастает индуктивность рассеяния обмоток. Компенсировать ее можно путем включения конденсатора параллельно первичной обмотке, подбирая его емкость по минимуму КСВ на верхней рабочей частоте.

    Для обмоток я обычно использую провод МГТФ-0,5 или более тонкий, если нужное число витков не умещается в отверстии. Заранее рассчитываю нужную длину провода и отрезаю ее некоторым запасом. Провод первичной и вторичной обмоток плотно скручиваю до намотки на сердечник. Если отверстие феррита не заполнено обмотками, лучше продевать витки в подходящие по диаметру термоусаживаемые трубки, отрезанные по длине «бинокля», которые после завершения намотки усаживаются с помощью фена. Плотное прижатие витков обмоток друг к другу расширяет полосу трансформатора и часто позволяет исключить компенсирующий конденсатор.

    Следует иметь в виду, что повышающий трансформатор может работать и как понижающий, с тем же коэффициентом трансформации, если его перевернуть. Обмотки, предназначенные для подключения к низкоомным сопротивлениям, нужно выполнять из экранной «плетёнки» или нескольких проводов, соединенных параллельно.

    Проверку трансформатора можно проводить с помощью измерителя КСВ, нагрузив его выход на безиндуктивный резистор соответствующего номинала. Границы полосы определяются по допустимому уровню КСВ, например 1,1. Измерить потери, вносимые трансформатором, можно путем измерения ослабления, вносимого двумя одинаковыми трансформаторами, включенными последовательно, так, чтобы вход и выход имели сопротивление 50 Ом. Результат не забудьте поделить на 2.

    Несколько труднее оценить мощностные характеристики трансформатора. Для этого потребуется усилитель и эквивалент нагрузки, способный выдерживать необходимую мощность. Используется та же схема с двумя трансформаторами. Измерение проводится на нижней рабочей частоте. Постепенно поднимая мощность CW и поддерживая ее примерно с минуту, определяем рукой температуру феррита. Уровень, при котором феррит за минуту начинает чуть заметно нагреваться, можно считать максимально допустимым для данного трансформатора. Дело в том, что при работе не на эквивалент нагрузки, а на реальную антенну, имеющую реактивную составляющую входного импеданса, трансформатор передает еще и реактивную мощность, которая может насыщать магнитный сердечник и вызывать дополнительный нагрев.

    На рисунках показаны примеры практических конструкций. На рис.5 - трансформатор, имеющий два выхода: на 200 и 300 Ом.


    Рис.2. Трансформатор 50:110


    Рис.3.
    Трансформатор 50:200



    Рис.4.
    Трансформатор 50:300


    Рис.5.
    Трансформатор 50:200/300

    Трансформаторы можно разместить на подходящего размера печатной плате,
    защитив ее от осадков любым практическим способом.

    Владислав Щербаков, RU3ARJ

    Если ваша антенна с усилителем, не принимает стабильно сигнал цифрового телевидения DVB-T2, то часто проблема не в том, что усилитель слабый, а в том что он вообще там не нужен. Да да, после прихода цифрового эфирного телевидения, ситуация с приёмом сигнала в некоторых отношениях сильно поменялась и во многих случаях, усилитель в антенне, становится просто не нужным, более того он становится причиной неустойчивого, а иногда и вообще отсутствующего сигнала.

    О причине этого явления и методах борьбы с ним я уже , поэтому не буду повторятся и не буду объяснять зачем нужна переделка о которой хочу рассказать в этой заметке. А именно как усилитель для антенны «полячки» переделать в плату согласования.

    Что для этого понадобится? Собственно сам усилитель, можно даже неисправный, отрезок провода сантиметра 3 и паяльник. Задача — Из платы усилителя сделать плату согласования, которую не всегда можно купить в магазинах.

    Приступаем к переделке

    На усилителях от антенн типа «решётка» имеется симметрирующий трансформатор, он нам и понадобится для согласования антенны с потребителем сигнала. На фото ниже трансформатор обведён жёлтым. (В усилителях для других типов антенн тоже можно совершить подобную переделку)

    Выпаивать его не нужно, всё гораздо проще. На плате усилителя, со стороны радиоэлементов, нужно убрать лишнее. А именно, отпаять конденсатор на выходе трансформатора (отмечен красной точкой) И отпаять элементы обвязки в цепи клеммы, к которой подключается центральная жила кабеля (отмечены оранжевым)

    Внимание! В усилителях с другими номерами, количество элементов и их расположение может отличаться, но смысл остаётся тем же, отсоединить трансформатор и клемму от схемы усилителя.

    У меня получилось вот так! (Фото ниже) Конечно же, все места пайки я промыл спиртом….. ну как промыл? — Протёр тонким слоем, ну вы знаете))) Хотя это делать и необязательно.

    Заключительный этап — Коротким проводком нужно соединить освободившийся выход трансформатора с клеммой для центральной жилы кабеля. Всё, плата согласования готова! Можно ставить и пробовать. И да! Не забудьте вместо блока питания, поставить обычный ТВ штекер. Тот что с сепаратором от БП, не подойдёт.

    На этом всё! Нашли полезным? Делитесь с друзьями, кнопки соц сетей ниже, это поможет развитию сайта. Спасибо!

    Согласование антенн

    при помощи четвертьволнового трансформатора.

    Трансформирующие свойства четвертьволновых линий известны давно, но широкого применения они не получили ввиду ряда причин. Попробуем разобраться детально.

    Четвертьволновый трансформатор представляет собой отрезок кабеля равный четверти длины волны. Строго говоря это может быть не обязательно кабель, а волновая линия или резонатор типа «желобок», но для КВ будем применять кабель.

    https://pandia.ru/text/80/148/images/image002_176.jpg" align="left" width="137" height="82 src=">

    Такой трансформатор можно использовать для согласования антенны с фидерной линией. Для примера возьмем широко распространенную антенну (полноразмерную рамку с периметром равным длине волны) - треугольник называемый «дельта» сопротивлением 112 Ом и согласуем с кабелем с волновым сопротивлением 50 Ом используя в качестве четвертьволнового трансформатора кабель с волновым сопротивлением 75 Ом:

    Rн = 75*75/112 = 50,22

    Следует сразу оговорить, что согласование при помощи четвертьволнового трансформатора – это однодиапазонный вариант. Расчеты производятся на частоте резонанса антенны, где сопротивление не имеет реактивной составляющей Если антенна позволяет работать на разных диапазонах то для каждого диапазона требуется свой согласователь.

    При помощи четвертьволновых трансформаторов легко поясняется принцип полуволнового повторителя. Представим его в виде двух четвертьволновых трансформаторов соединенных последовательно


    https://pandia.ru/text/80/148/images/image004_107.jpg" align="left" width="189" height="189">

    Если к открытому концу подключить нагрузку с сопротивлением Rа, то сопротивление вдоль линии распределится от нуля до Rа но не линейно, а пропорционально синусоидальной функции, и когда угол изменяется от нуля град. до 90 град. (Пи/2), а это соответствует линейным размерам от закороченного конца до точки подключения нагрузки, то значения синуса изменяются от 0 до 1, а сопротивление от нуля до сопротивления нагрузки. Если подключить фидер к такому трансформатору, то передвигая точку подключения можно найти точку с сопротивлением равным волновому сопротивлению фидера. (См. Рис.4)

    Это свойство используется для согласования антенн с фидером. При этом не имеет значения каким кабелем и с каким волновым сопротивлением сделан четвертьволновой трансформатор и каким кабелем выполнена фидерная линия. Они могут иметь разное волновое сопротивление и разный коэффициент укорочения. К сожалению нигде не приводится расчет такого согласования, а даются готовые размеры для конкретного случая. Искать точку подключения экспериментально-неблагодарное занятие. Рассмотрим несколько вариантов.

    1. Сопротивление антенны выше волнового сопротивления кабеля.

    В этом случае подключаем антенну к открытому концу трансформатора.

    https://pandia.ru/text/80/148/images/image007_67.jpg" align="left" width="389" height="78 src=">

    Где Ra – сопротивление антенны

    Rф - волновое сопротивление фидерной линии

    Ку – коэффициент укорочения кабеля трансформатора,

    F - частота в МГц.

    Довольно трудно найти калькулятор который вычисляет значение арксинуса. Даю ссылку такого калькулятора: http://help-math. narod. ru/ . Для вычислений на таком калькуляторе нужно ввести всю формулу с исходными данными и сделать расчет. Для нашего примера, где

    Сопротивление антенны 112 Ом

    Фидер 75 Ом

    Трансформатор из кабеля с Ку = 0,66

    Найдем точку подключения фидера считая от закороченного конца:

    L = 150*0.66*arcsin(sqrt(75/112))/3.14/3.6 = 8.39 метра.

    Если подставить в формулу равные значения сопротивлений антенны и фидера (к примеру сопротивление фидера равно сопротивлению антенны = 112 Ом),

    L = 150*0.66*arcsin(sqrt(112/112))/3.14/3.6 = 13,75 метра.

    Это и есть четверть длины волны.

    Четвертьволновый трансформатор имеет еще одно замечательное свойство. При изменении частоты в сторону от резонанса сопротивление антенны приобретает комплексный характер со знаком реактивной составляющей плюс или минус. Сопротивление четвертьволнового трансформатора также становится реактивным, но с противоположным знаком. Это приводит к взаимной компенсации реактивных составляющих и расширению полосы пропускания резонансных антенн до 20%, что очень важно на таких диапазонах как 80 и теперь уже 40 метров.

    2. Сопротивление антенны ниже сопротивления кабеля.

    В этом случае к открытому концу четвертьволнового трансформатора подключают фидер, а антенну к точке между замкнутым концом трансформатора и фидером.

    https://pandia.ru/text/80/148/images/image009_59.jpg" align="left" width="216" height="173 src=">

    Остается произвести расчет точки подключения антенны. Расчет проводим практически по той же формуле поменяв местами Rа и Rф:

    Хочу выразить благодарность Сергею Макаркину RX3AKT за техническую консультацию и рецензию статьи.

    Владислав Кеденко UT4EN

    Согласующий трансформатор - электротехническое устройство, обеспечивающее передачу или преобразование полезного гармонического сигнала различной частоты с минимальными искажениями и потерей мощности. Такой результат становится возможным только благодаря точному согласованию полного сопротивления (импеданса) источника сигнала и нагрузки или отдельных каскадов электронных схем.

    Назначение

    Известно, что минимизировать потери электрических сигналов при передаче потребителю можно только тогда, когда его полное сопротивление соответствует внутреннему сопротивлению источника. Это правило действует для всех схем - многокаскадных электронных устройств, при подключении нагрузки к усилителям или подаче на них сигнала, например, от звукоснимателя или микрофона.

    Основное назначение согласующего трансформатора связано именно с необходимостью масштабирования сопротивления источника и нагрузки. При этом само непосредственное изменение показателей силы тока и напряжения не имеет значения. Применяются такие приборы тогда, когда требуется подключение нагрузки, не соответствующей по сопротивлению допустимым значениям для источника сигнала.

    Принцип работы

    При подключении к первичной обмотке трансформатора источника переменного тока за счет сердечника магнитный поток, который охватывает и вторичную обмотку устройства. При этом индуцируется электродвижущая сила, которая и обеспечивает появление в цепи тока при подключении нагрузки. Благодаря этому осуществляется передача энергии или сигнала без непосредственной электрической связи между обмотками.


    Чтобы обеспечить согласование нагрузки и источника по сопротивлению, соотношение числа витков во вторичной обмотке к первичной должно равняться квадратному корню отношения сопротивления нагрузки и источника сигнала. Только в этом случае можно обеспечить передачу без лишних потерь энергии и искажений.

    Пример расчёта



    Виды магнитопроводов


    Виды магнитопроводов

    Особенности конструкции

    Передача энергии между обмотками в трансформаторах осуществляется за счет воздействия создаваемого магнитного поля. В зависимости от типа согласующего устройства оно может иметь разную конструкцию:

    1. Устройства для работы с низкочастотным электрическим сигналом обычно наматывают на броневых или стержневых сердечниках из электротехнической стали. Именно такие устройства применяются в усилителях и звуковоспроизводящей аппаратуре. Габаритные размеры зависят от передаваемой мощности, но обычно они не отличаются большими значениями.
    1. Для высокочастотных согласующих трансформаторов чаще всего применяют тороидальные сердечники из ферромагнитных веществ. Они имеют форму кольца с прямоугольным сечением.
    2. Отдельные виды ВЧ согласующих устройств могут быть выполнены по принципу воздушных трансформаторов. Простейший пример - петля из коаксиального кабеля, которая устанавливалась при подключении антенны к основному проводу. Существует вариант и распечатанных непосредственно на плате маломощных трансформаторов согласующего типа.

    Для обмоток применяют изолированный медный провод круглого сечения, диаметр которого подбирается на основании расчета. Допускается и намотка проводниками прямоугольной формы, но только при сечении более 5 мм2. В качестве дополнительной изоляции применяется нанесение 2 слоев специального лака.


    Основная область применения

    Необходимость подобного масштабирования сопротивления существует практически во всех областях, связанных с передачей электрических сигналов и энергии. Но наибольшее применение согласующие трансформаторы получили в следующих сферах:

    1. В усилителях низкой частоты (звуковых усилителях) в качестве межкаскадных и выходных трансформаторов. Необходимость в подобных устройствах была связана с тем, что старые усилители изготавливались на ламповой компонентной базе. При этом практически все лампы отличались высоким внутренним сопротивлением и подключение к ним 4 или 8-омных динамиков напрямую к ним было невозможно. Даже с появлением транзисторов, операционных усилителей ситуация в корне не изменилась, так как без согласования сопротивлений увеличивался уровень искажений сигнала.
    2. В качестве входных согласующие трансформаторы применяются в звуковоспроизводящей аппаратуре для подключения микрофонов, звукоснимателей различных типов. Сопротивление этих устройств варьируется в пределах от десятка до сотни ом, а для подключения к усиливающей аппаратуре требуются значения, которые будут на порядок больше.
    3. Еще одна сфера связана с передачей радиосигнала. Трансформаторы этого типа используются для согласования сигнала при подключении антенн к приемным и передающим устройствам. Без их применения получить качественный сигнал не удается. Отметим, что в этих целях используются высокочастотные согласующие трансформаторы.

    На этом область применения не ограничивается. Так, даже обычный сварочный трансформатор в какой-то степени можно считать согласующим, что обусловлено требованиями к величине нагрузки на электрические сети.

    Виды согласующих трансформаторов

    Наибольшее применение на практике получил звуковой согласующий трансформатор входного и выходного типов. Для усилителей на транзисторной элементной базе используют устройства серии ТОТ (оконечный транзисторный), а на ламповых элементах ТОЛ (оконечный ламповый).


    В качестве входных получила применение серия ТВТ (входной транзисторный).


    Для антенны применяют устройства тороидального типа на ферромагнитных кольцах или конусах необходимого диаметра. Отметим, что для таких трансформаторов не обязательна сплошная намотка по сечению магнитопровода. Достаточно провести через внутреннюю часть прямые проводники, что позволяет сэкономить на производстве за счет уменьшения потребности в электротехнических материалах.

    Особенности в эксплуатации

    Отметим, что каждая серия устройств предназначена для определенных условий эксплуатации. В большинстве случаев допустимый температурный диапазон составляет -60/+85°С, атмосферное давление не менее 5 мм рт. ст., но не более 3 атмосфер. Допускается эксплуатация при относительной влажности до 98 %.

    В любом случае при выборе оборудования этого типа необходимо уточнить допустимые эксплуатационные условия.

    Как сделать своими руками

    Особых сложностей и отличий в изготовлении согласующих трансформаторов нет. Технология сходна со сборкой понижающих устройств. Но необходимо соблюдать следующие рекомендации:

    • Обмотки укладываются равномерно без повреждения изоляции.
    • Пластины малогабаритных устройств не нуждаются в дополнительной изоляции, лакируют только детали наборных сердечников более мощных трансформаторов.
    • При выборе типа сердечника необходимо обращать на технические характеристики трансформаторной стали или ферромагнитных колец.

    Отметим, что самостоятельное изготовление устройств такого типа экономически нецелесообразно. Закупка отдельных комплектующих обойдется дороже. Согласующее устройство с требуемым коэффициентом трансформации по сопротивлению в заводском исполнении обойдется дешевле.