Сформулируйте закон ома для замкнутой электрической цепи. Закон ома простым языком. Закон Ома в дифференциальной и интегральной форме

03.05.2022 Обзоры 

то есть напряжение между полюсами источника

тока зависит от ЭДС и работы сторонних сил по перемещению единичного заряда от одного полюса источника к другому.

2. Сформулируйте и запишите закон Ома для замкнутой цепи

Сила тока в замкнутой электрической цепи пропорциональна ЭДС источника и обратно пропорционально сопротивлению цепи.

3. В чем различие встречного и согласованного включения последовательно соединенных источников тока?

Говорят, что 2-й источник включен встречно первому, если они, работая в одиночку, создают токи, идущие в одном направлении. 3-й источник включен согласованно с первым, если токи, создаваемые ими, направлены одинаково.

4. Сформулируйте закон Ома для замкнутой цепи с несколькими последовательно соединенными источниками тока. Приведите формулу этого закона.

Сила тока в замкнутой электрической цепи с последовательно соединенными источниками тока прямо пропорциональна сумме их

ЭДС и обратно пропорционально сопротивлению цепи.

5. Как определить направление тока в замкнутой цепи с несколькими последовательно соединенными источниками тока?

Если

то ток течет по часовой стрелке. В обратном случае - против часовой стрелки.

Для электрика и электронщика одним из основных законов является Закон Ома. Каждый день работа ставит перед специалистом новые задачи, и зачастую нужно подобрать замену сгоревшему резистору или группе элементов. Электрику часто приходится менять кабеля, чтобы выбрать правильный нужно «прикинуть» ток в нагрузке, так приходится использовать простейшие физические законы и соотношения в повседневной жизни. Значение Закона Ома в электротехники колоссально, к слову большинство дипломных работ электротехнических специальностей рассчитываются на 70-90% по одной формуле.

Историческая справка

Год открытия Закон Ома — 1826 немецким ученым Георгом Омом. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника. Позже выяснилось, что третья составляющая – это не что иное, как сопротивление. Впоследствии этот закон назвали в честь открывателя, но законом дело не ограничилось, его фамилией и назвали физическую величину, как дань уважения его работам.

Величина, в которой измеряют сопротивление, названа в честь Георга Ома. Например, резисторы имеют две основные характеристики: мощность в ваттах и сопротивление – единица измерения в Омах, килоомах, мегаомах и т.д.

Закон Ома для участка цепи

Для описания электрической цепи не содержащего ЭДС можно использовать закон Ома для участка цепи. Это наиболее простая форма записи. Он выглядит так:

Где I – это ток, измеряется в Амперах, U – напряжение в вольтах, R – сопротивление в Омах.

Такая формула нам говорит, что ток прямопропорционален напряжению и обратнопропорционален сопротивлению – это точная формулировка Закона Ома. Физический смысл этой формулы – это описать зависимость тока через участок цепи при известном его сопротивлении и напряжении.

Внимание! Эта формула справедлива для постоянного тока, для переменного тока она имеет небольшие отличия, к этому вернемся позже.

Кроме соотношения электрических величин данная форма нам говорит о том, что график зависимости тока от напряжения в сопротивлении линеен и выполняется уравнение функции:

f(x) = ky или f(u) = IR или f(u)=(1/R)*I

Закон Ома для участка цепи применяют для расчетов сопротивления резистора на участке схемы или для определения тока через него при известном напряжении и сопротивлении. Например, у нас есть резистор R сопротивлением в 6 Ом, к его выводам приложено напряжение 12 В. Необходимо узнать, какой ток будет протекать через него. Рассчитаем:

I=12 В/6 Ом=2 А

Идеальный проводник не имеет сопротивления, однако из-за структуры молекул вещества, из которого он состоит, любое проводящее тело обладает сопротивлением. Например, это стало причиной перехода с алюминиевых проводов на медные в домашних электросетях. Удельное сопротивление меди (Ом на 1 метр длины) меньше чем алюминия. Соответственно медные провода меньше греются, выдерживают большие токи, значит можно использовать провод меньшего сечения.

Еще один пример — спирали нагревательных приборов и резисторов обладают большим удельным сопротивлением, т.к. изготавливаются из разных высокоомных металлов, типа нихрома, кантала и пр. Когда носители заряда движутся через проводник, они сталкиваются с частицами в кристаллической решетке, вследствие этого выделяется энергия в виде тепла и проводник нагревается. Чем больше ток – тем больше столкновений – тем больше нагрев.

Чтобы снизить нагрев проводник нужно либо укоротить, либо увеличить его толщину (площадь поперечного сечения). Эту информацию можно записать в виде формулы:

R провод =ρ(L/S)

Где ρ – удельное сопротивление в Ом*мм 2 /м, L – длина в м, S – площадь поперечного сечения.

Закон Ома для параллельной и последовательной цепи

В зависимости от типа соединения наблюдается разный характер протекания тока и распределения напряжений. Для участка цепи последовательного соединения элементов напряжение, ток и сопротивление находятся по формуле:

Это значит, что в цепи из произвольного количества последовательно соединенных элементов протекает один и тот же ток. При этом напряжение, приложенное ко всем элементам (сумма падений напряжения), равно выходному напряжению источника питания. К каждому элементу в отдельности приложена своя величина напряжений и зависит от силы тока и сопротивления конкретного:

U эл =I*R элемента

Сопротивление участка цепи для параллельно соединённых элементов рассчитывается по формуле:

1/R=1/R1+1/R2

Для смешанного соединения нужно приводить цепь к эквивалентному виду. Например, если один резистор соединен с двумя параллельно соединенными резисторами – то сперва посчитайте сопротивление параллельно соединенных. Вы получите общее сопротивление двух резисторов и вам остаётся сложить его с третьим, который с ними соединен последовательно.

Закон Ома для полной цепи

Полная цепь предполагает наличие источника питания. Идеальный источник питания – это прибор, который имеет единственную характеристику:

  • напряжение, если это источник ЭДС;
  • силу тока, если это источник тока;

Такой источник питания способен выдать любую мощность при неизменных выходных параметрах. В реальном же источнике питания есть еще и такие параметры как мощность и внутреннее сопротивление. По сути, внутреннее сопротивление – это мнимый резистор, установленный последовательно с источником ЭДС.

Формула Закона Ома для полной цепи выглядит похоже, но добавляется внутренне сопротивление ИП. Для полной цепи записывается формулой:

I=ε/(R+r)

Где ε – ЭДС в Вольтах, R – сопротивление нагрузки, r – внутреннее сопротивление источника питания.

На практике внутреннее сопротивление является долями Ома, а для гальванических источников оно существенно возрастает. Вы это наблюдали, когда на двух батарейках (новой и севшей) одинаковое напряжение, но одна выдает нужный ток и работает исправно, а вторая не работает, т.к. проседает при малейшей нагрузке.

Закон Ома в дифференциальной и интегральной форме

Для однородного участка цепи приведенные выше формулы справедливы, для неоднородного проводника необходимо его разбить на максимально короткие отрезки, чтобы изменения его размеров были минимизированы в пределах этого отрезка. Это называется Закон Ома в дифференциальной форме.

Иначе говоря: плотность тока прямо пропорциональной напряжённости и удельной проводимости для бесконечно малого участка проводника.

В интегральной форме:

Закон Ома для переменного тока

При расчете цепей переменного тока вместо понятия сопротивления вводят понятие «импеданс». Импеданс обозначают буквой Z, в него входит активное сопротивление нагрузки R a и реактивное сопротивление X (или R r). Это связано с формой синусоидального тока (и токов любых других форм) и параметрами индуктивных элементов, а также законов коммутации:

  1. Ток в цепи с индуктивностью не может измениться мгновенно.
  2. Напряжение в цепи с ёмкостью не может измениться мгновенно.

Таким образом, ток начинает отставать или опережать напряжение, и полная мощность разделяется на активную и реактивную.

X L и X C – это реактивные составляющие нагрузки.

В связи с этим вводится величина cosФ:

Здесь – Q – реактивная мощность, обусловленная переменным током и индуктивно-емкостными составляющими, P – активная мощность (выделяется на активных составляющих), S – полная мощность, cosФ – коэффициент мощности.

Возможно, вы заметили, что формула и её представление пересекается с теоремой Пифагора. Это действительно так и угол Ф зависит от того, насколько велика реактивная составляющая нагрузки – чем её больше, тем он больше. На практике это приводит к тому, что реально протекающий в сети ток больше чем тот, что учитывается бытовым счетчиком, предприятия же платят за полную мощность.

При этом сопротивление представляют в комплексной форме:

Здесь j – это мнимая единица, что характерно для комплексного вида уравнений. Реже обозначается как i, но в электротехнике также обозначается и действующее значение переменного тока, поэтому, чтобы не путаться, лучше использовать j.

Мнимая единица равняется √-1. Логично, что нет такого числа при возведении в квадрат, которого может получиться отрицательный результат «-1».

Как запомнить закон Ома

Чтобы запомнить Закон Ома – можно заучить формулировку простыми словами типа:

Чем больше напряжение – тем больше ток, чем больше сопротивление – тем меньше ток.

Или воспользоваться мнемоническими картинками и правилами. Первая это представление закона Ома в виде пирамиды – кратко и понятно.

Мнемоническое правило – это упрощенный вид какого-либо понятия, для простого и легкого его понимания и изучения. Может быть либо в словесной форме, либо в графической. Чтобы правильно найти нужную формулу – закройте пальцем искомую величину и получите ответ в виде произведения или частного. Вот как это работает:

Вторая – это карикатурное представление. Здесь показано: чем больше старается Ом, тем труднее проходит Ампер, а чем больше Вольт – тем легче проходит Ампер.

Закон Ома – один из основополагающих в электротехнике, без его знания невозможна бОльшая часть расчетов. И в повседневной работе часто приходится переводить или по сопротивлению определять ток. Совершенно не обязательно понимать его вывод и происхождение всех величин – но конечные формулы обязательны к освоению. В заключении хочется отметить, что есть старая шуточная пословица у электриков: «Не знаешь Ома – сиди дома». И если в каждой шутке есть доля правды, то здесь эта доля правды – 100%. Изучайте теоретические основы, если хотите стать профессионалом на практике, а в этом вам помогут другие статьи из нашего сайта.

Нравится(0 ) Не нравится(0 )

Любому, кто выбрал ремонт и обслуживание электроустановок своей специальностью, хорошо известно утверждение преподавателей: «Закон Ома для замкнутой цепи нужно знать. Даже проснувшись среди ночи, важно суметь его сформулировать. Потому что это основа всей электротехники». Действительно, закономерность, открытая выдающимся немецким физиком Георгом Симоном Омом, повлияла на последующее развитие науки об электричестве.

В 1826 году, проводя эксперименты по изучению прохождения по проводнику, Ом выявил прямую взаимосвязь между подведенным к цепи напряжением источника питания (хотя в данном случае корректнее говорить об электродвижущей силе ЭДС) и сопротивлением самого проводника. Зависимость была теоретически обоснована, в результате чего появился закон Ома для замкнутой цепи. Важная особенность: актуальность выявленного фундаментального закона справедлива лишь при отсутствии внешней возмущающей силы. Другими словами, если, например, проводник находится в переменном магнитном поле, то непосредственное применение формулировки невозможно.

Закон Ома для замкнутой цепи был выявлен при изучении простейшей схемы: источник питания (обладающий ЭДС), от двух его выводов к резистору идут проводники, в которых происходит направленное движение несущих заряд элементарных частиц. Отсюда, ток представляет собой отношение электродвижущей силы к суммарному сопротивлению контура:

где E - электродвижущая сила измеряется в вольтах; I - значение тока, в амперах; R - электрическое сопротивление резистора, в Омах. Отметим, что закон Ома для замкнутой цепи учитывает все составляющие R. При расчетах полной замкнутой цепи под R понимают сумму сопротивлений резистора, проводника (r), источника питания (r0). То есть:

Если источника r0 больше, чем сумма R+r, то сила тока не зависит от характеристики подключенной нагрузки. Другими словами, источник ЭДС в этом случае является Если же значение r0 меньше, чем R+r, то ток обратно пропорционален суммарному внешнему сопротивлению, а источник питания формирует напряжение.

При выполнении точных расчетов учитывают даже потерю напряжения в местах соединений. Электродвижущую силу определяют путем замера разности потенциалов на выводах источника при отключенной нагрузке (цепь разомкнута).

Законы Ома для участка цепи применяются столь же часто, как и для замкнутого контура. Отличие в том, что в расчетах не учитывается ЭДС, а лишь разность потенциалов. Такой участок называется однородным. В таком случае имеет место частный случай, позволяющий рассчитывать характеристики на каждом ее элементе. Запишем его в виде формулы:

где U - напряжение или разность потенциалов, в вольтах. Замеряется вольтметром путем параллельного подключения щупов к выводам какого-либо элемента (сопротивления). Полученное значение U всегда меньше ЭДС.

Собственно, именно эта формула является наиболее известной. Зная две любых составляющих, из формулы можно найти третью. Расчет контуров и элементов выполняют посредством рассматриваемого закона для участка цепи.

Закон Ома для магнитной цепи во многом схож с его трактовкой для электрического контура. Вместо проводника используется замкнутый магнитопровод, источником является обмотка катушки с проходящим по виткам током. Соответственно, возникающий замыкается по магнитопроводу. Магнитный поток (Ф), циркулирующий по контуру, непосредственно зависит от значения МДС (магнитодвижущей силы) и сопротивления материала прохождения магнитного потока:

где Ф - магнитный поток, в веберах; F - МДС, в амперах (иногда гилбертах); Rm - сопротивление, вызывающее затухание.

Рассмотрим простейшую систему проводников, содержащую источник тока (рис. III.29). Допустим, что в приборе потребляющем электрическую энергию, необходимо поддержат определенную силу тока причем электроны должны двигаться в направлении, указанном стрелками. Очевидно, что при переносе через электронов с общим зарядом, равным - электрические силы, действующие на электроны в направлении будут совершать положительную работу, которая, согласно формуле (1.42), зависит только от потенциалов начальной и конечной точек траектории переноса и равна

Для того чтобы поддержать потенциалы постоянными, источник тока должен непрерывно перебрасывать электроны обратно от точки 1 к точке 2. При этом необходимо преодолеть притяжение электронов к положительно заряженной точке 1 и отталкивание от отрицательно заряженной точки 2, т. е. преодолевать электростатическую силу направленную внутри источника от точки 2 к точке 1. Таким образом, источник тока должен приложить к электронам стороннюю силу направленную против электростатической силы

обусловленного столкновениями между электронами и атомами источника тока. При этих столкновениях теряется часть кинетической энергии упорядоченного движения электронов и поэтому, чтобы сохранить постоянной скорость этого движения, источник тока должен компенсировать указанную выше потерю энергии внутри самого источника.

Полная работа совершаемая сторонними силами внутри источника тока при переносе заряда из точки 1 в точку 2, равна сумме: 1) работы против электростатических сил действующих внутри источника тока, и 2) потери энергии электронов при их прохождении через источник тока:

Это соотношение выражает закон сохранения энергии. Очевидно, что работа сторонней силы равна работе совершаемой электростатическими силами вне источника тока. Это означает, что источник тока является также источником той энергии или работы, которая выделяется движущимися зарядами во внешнем участке цепи Для того чтобы поддержать потенциалы постоянными, источник тока должен непрерывно совершать работу компенсирующую потерю энергии во внешней цепи

Для оценки потери энергии электронов при их перемещении внутри самого источника тока необходима знать его электрическое сопротивление тогда, согласно формуле (2.13),

Полная работа сторонних сил на основании закона сохранения энергии (см. формулу (2.19))

Отношение работы, совершаемой сторонними силами внутри источника тока при перемещении через него заряда к величине этого заряда, называется электродвижущей силой (э. д. с.) этого источника тока и обозначается :

На основании закона Ома для участка цепи

Эта формула выражает закон Ома для замкнутого контура, по которому течет постоянный ток. Называя падением напряжения во внешних участках цепи, а падением напряжения внутри источника тока, можно закон Ома выразить иначе:

электродвижущая сила, действующая в замкнутой цепи, равна сумме падений напряжения в этой цепи.

Ежесекундная работа, совершаемая источником тока, т. е. его мощность,

Эта работа равна той энергии, которая ежесекундно выделяется на всех сопротивлениях цепи.

Если источник тока не замкнут, то упорядоченное движение зарядов через него не происходит и потеря энергии внутри источника тока отсутствует. Сторонняя сила может только вызвать скопление зарядов на полюсах источника тока. Это скопление прекратится, когда внутри источника между его полюсами появится электрическое поле в котором электростатическая сила сделается равной сторонней силе, т. е. Разность потенциалов между полюсами разомкнутого источника тока можно рассчитать по формуле (1.39):

причем интегрирование можно произвести вдоль любой линии, соединяющей полюсы источника тока. Подставим (пробный заряд, как обычно, положим положительным) и заменим на

Однако есть работа совершаемая сторонними силами против электростатических сил при переносе заряда из точки 2 в точку тогда, согласно указанному выше определению, э. д. с.

Таким образом, электродвижущая сила источника тока равна разности потенциалов на его полюсах в разомкнутом состоянии. Если же источник тока замкнуть на внешнюю цепь, то, согласно формуле (2.22), разность потенциалов между его полюсами будет меньше э. д. с. на величину падения напряжения внутри самого источника:

Допустим, в электрическом контуре (рис. II 1.30) имеются два источника тока, которые могут быть включены так, что сторонние силы в них действуют либо в одном либо в противоположных (б) направлениях. В первом случае (а) сторонние силы в обоих источниках действуют в направлении движении зарядов и совершают положительные работы Общая работа этих сил и тогда действующая в контуре э. д. с.

Энергия, выделяющаяся в контуре, равна сумме работ, совершаемых обоими источниками.

Во втором случае (б) у источника I сторонние силы действуют в направлении движения зарядов и совершают положительную работу; у источника II сторонние силы направлены против движения зарядов и совершают отрицательную работу. Суммарная работа сторонних сил в контуре и общая э. д. с. в контуре

Рассмотрим простейшую замкнутую цепь, состоящую из источника (гальванического элемента, аккумулятора или генератора)

и резистора сопротивлением (рис. 161). Источник тока имеет и сопротивление Сопротивление источника часто называют внутренним сопротивлением в отличие от внешнего сопротивления цепи. В генераторе это сопротивление обмоток, а в гальваническом элементе - сопротивление раствора электролита и электродов

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление цепи. Эта связь может быть установлена теоретически, если использовать закон сохранения энергии и закон Джоуля - Ленца (9.17).

Пусть за время через поперечное сечение проводника пройдет заряд Тогда работу сторонних сил по перемещению заряда можно записать так: Согласно определению силы тока Поэтому

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых и выделяется некоторое количество теплоты. По закону Джоуля - Ленца оно равно:

Согласно закону сохранения энергии Приравнивая (9.20) и (9.21), получим:

Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи.

Обычно закон Ома для замкнутой цепи записывают в форме:

Сила тока в замкнутой цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Сила тока зависит от трех величин: сопротивлений и внешнего и внутреннего участков цепи. Внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи При этом напряжение на зажимах источника приблизительно равно

Но при коротком замыкании сила тока в цепи определяется именно внутренним сопротивлением источника и может при электродвижущей силе в несколько вольт быть очень большой, если мало (например, у аккумулятора Ом). Провода могут расплавиться, а сам источник - выйти из строя.

Если цепь содержит несколько последовательно соединенных элементов с то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных элементов. Для определения знака ЭДС любого источника нужно вначале условиться относительно выбора положительного направления обхода контура. На рисунке 162 положительным (произвольно) считает направление обхода против часовой стрелки.

Если при обходе цепи переходят от отрицательного полюса источника к положительному, то Сторонние силы внутри источника совершают при этом положительную работу. Если же при обходе цепи переходят от положительного полюса источника к отрицательному, ЭДС будет отрицательной. Сторонние силы внутри источника совершают отрицательную работу. Так, для цепи, изображенной на рисунке 162:

Если то согласно (9.23) сила тока т. е. направление тока совпадает с направлением обхода контура. При наоборот, направление тока противоположно направлению обхода контура. Полное сопротивление цепи равно сумме всех сопротивлений:

При параллельном соединении гальванических элементов с одинаковыми ЭДС (или других источников) ЭДС батареи равна ЭДС одного из элементов (рис. 163). Внутреннее же сопротивление батареи рассчитывают по обычному правилу параллельного соединения проводников. Для цепи, изображенной на рисунке 163, согласно закону Ома для замкнутой цепи сила тока определяется следующей формулой:

1. Почему электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный электрический ток в цепи? 2. Что называют сторонними силами? 3. Что называют электродвижущей силой?

4. Сформулируйте закон Ома для замкнутой цепи. 5. От чего зависит знак ЭДС в законе Ома для замкнутой цепи?