Презентация на тему "электрическая цепь". Презентация "Электрические схемы. Элементы и параметры электрических цепей" Презентация на тему топологии электрических цепей

09.03.2022 Обзоры 

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Электрическая цепь и ее составные части Гришина Л.А., учитель физики МКС(К) ОУ С (К) ОШ 37 I II вида г. Новосибирск

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ Для того чтобы создать электрический ток, необходимо составить замкнутую электрическую цепь из электрических приборов.

Самая простая электрическая цепь состоит из: 1. источника тока; 2. потребителя электроэнергии (лампа, электроплитка, электродвигатель, электрокипятильник, электробытовые приборы); 3. замыкающего и размыкающего устройства(выключатель, кнопка, ключ, рубильник); 4. соединительных проводов.

Электрическая цепь Простейшая электрическая цепь, которая состоит из гальваничес-кого элемента, лампы и ключа

Электрическая схема Чертежи, на которых показано, как электрические приборы соединены в цепь, называются электрическими схемами.

Условные обозначения На электрических схемах все элементы электрической цепи имеют условные обозначения.

1 - гальванический элемент. 2 - батарея элементов 3 - соединение проводов 4 - пересечение проводов на схеме без соединения 5 - зажимы для подключения 6 - ключ 7 - электрическая лампа 8 - электрический звонок 9 - резистор (или иначе сопротивление) 10- нагревательный элемент 11 - предохранитель

РЕОСТАТ Существуют сопротивления, величину которых можно плавно изменять. Это могут быть переменные резисторы или сопротивления, называемые реостатами.

Условное обозначение реостата С помощью перемещаемого движка 2 можно увеличивать или уменьшать величину сопротивления (между контактами 1 и 2), включаемого в электрическую цепь.

Интересно! Немецкий профессор Г.К. Лихтенберг из Геттенгена первый предложил ввести электрические символы, обосновал их практическое применение и использовал в своих работах! Благодаря ему, в электротехнике появляются математические знаки плюс и минус для обозначения электрических зарядов.

Домашнее задание §33, упражнение 13, стр.79

Литература Перышкин А. В. Физика. 8 кл.: Учебник для общеобразовательных учебных заведений/ А. В. Перышкин, Е. М. Гутник– М.: Дрофа, 2012 http:// fizika-class.narod.ru / Картинки со страниц свободного доступа сети интернет


По теме: методические разработки, презентации и конспекты

Презентация "Электрическая цепь и ее составные части"

Данный материал может быть использован на уроке физики в 8 классе по теме "Электрическая цепь и ее составные части" при изучении или повторении данной темы....

Презентация "Физический диктант. Электрическая цепь и её составные части"

Презентация для урока физики в 8 классе "Физический диктант. Электрическая цепь и её составные части".Диктант содержит не только вопросы о электрических цепях, но и вопросы на повторение.С помощью это...

1 Электрические цепи постоянного тока 1.1 Элементы электрических цепей постоянного тока Электрические схемы – это чертежи, на которых показано, как электрические приборы соединены в цепь. Электрическая цепь - совокупность устройств, предназначенных для передачи, распределения и взаимного преобразования энергии. Основными элементами электрической цепи являются источники и приемники электрической энергии, которые соединены между собой проводниками. В источниках электрической энергии химическая, механическая, тепловая энергия или энергия других видов превращается в электрическую. В приемниках электрической энергии - электрическая энергия преобразуется в тепловую, световую, механическую и другие. Электрические цепи, в которых получение энергии, передача и преобразование происходят при неизменных во времени токах и напряжениях называют цепями постоянного тока.




Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы. Первую группу составляют элементы, предназначенные для выработки электроэнергии (источники питания). Вторая группа элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т. д.). В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др.).


1.2 Источники энергии Источники ЭДС Источник ЭДС характеризуется величиной ЭДС равной напряжению (разности потенциалов) на зажимах при отсутствии тока через источник. ЭДС определяют как работу сторонних сил, присущих источнику, на перемещение единичного положительного заряда внутри источника от зажима с меньшим потенциалом к зажиму с большим потенциалом. Рисунок Обозначения источника ЭДС и гальванического элемента в схемах


Источники питания цепи постоянного тока это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. Все источники питания имеют внутреннее сопротивление, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи. Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы и др. Все электроприемники характеризуются электрическими параметрами, среди которых можно назвать самые основные напряжение и мощность. Для нормальной работы электроприемника на его зажимах (клеммах) необходимо поддерживать номинальное напряжение. Для приемников постоянного тока оно составляет 27, 110, 220, 440 В, а также 6, 12, 24, 36 В.


Напряжение на зажимах реального источника зависит от тока через источник. Если этой зависимостью можно пренебречь, то такой источник называют идеальным. На расчетных схемах обязательно нужно указывать направления напряжений и токов (выбираются произвольно). Рисунок Схема с реальным источником ЭДС


Для реальных источников запишем закон Ома для полной цепи:, U= I ·R н (1.1) где I - ток [A], E - ЭДС [B], R - сопротивление [Ом]. Отсюда следует: U=E-I×R BH (1.2) Напряжение U на зажимах реального источника меньше ЭДС на величину падения напряжения на внутреннем сопротивлении. Идеальный источник имеет R вн =0. Максимальный ток возникает в режиме короткого замыкания при R н =0, при этом выходное напряжение U стремится также к нулю.


1.2.2 Источник тока Источник тока характеризуется током I при короткозамкнутых зажимах (при отсутствии напряжения). Если ток не зависит от напряжения - такой источник называют идеальным. Рисунок Изображение источника тока в схемах


Ток I реального источника энергии зависит от напряжения U на его зажимах. Из закона Ома для полной цепи: (1.3) где - проводимость [См]. Рисунок Схема с реальным источником тока В этой схеме элемент g вн параллельно соединенный с идеальным источником J, называют внутренней проводимостью. Идеальный источник тока имеет g вн =0 (то есть R вн =).


1.2.3 Электрическая мощность Характеризует энергию, генерируемую источником в единицу времени. Для реального источника напряжения: P=E × I [Вт] (1.4) Для реального источника тока: [Вт] (1.5) Сопротивление нагрузки R н характеризует потребление электрической энергии, то есть превращение ее в другие виды при мощности, определяемой по формуле: [Вт] (1.6)


1.3 Обобщенный закон Ома для участка цепи с ЭДС - направление от точки с высоким потенциалом в точку с более низким потенциалом; - направление тока. Рисунок Неразветвленная цепь с источниками ЭДС


(1.7) где: - суммарное сопротивление участка схемы; - напряжение между выводами рассматриваемого участка; - алгебраическая сумма ЭДС действующих на данном участке. Если ЭДС совпадает по направлению с током, то ставится знак, если не совпадает -. Вывод: ток участка цепи с источниками ЭДС равен алгебраической сумме его напряжения и ЭДС, деленной на сопротивление участка.


1.4 Простейшие преобразования в электрических цепях Последовательное соединение сопротивлений Ток идущий в цепи одинаков в любой точке. Рисунок Эквивалентное сопротивление при последовательном соединении сопротивлений




1.4.2 Параллельное соединение сопротивлений Рисунок Параллельное соединение сопротивлений




Для эквивалентного сопротивления запишем формулу: (1.11) Эквивалентное сопротивление цепи, состоящей из параллельных составляющих, всегда меньше меньшего из сопротивлений цепи. Следовательно, при параллельном соединении эквивалентная проводимость цепи равна сумме проводимостей отдельных ветвей.


1.4.3 Замена источника тока источником ЭДС Рисунок Замена источника тока источником ЭДС Баланс мощности различается в этих схемах, поскольку через сопротивление R течет разный ток. Результат решения задачи всегда должен приводиться к исходной схеме. Для схемы с источником тока справедливо следующее соотношение: J - I общ - I R =0 (1.12)


1.5 Подключение измерительных приборов к электрическим цепям Прежде чем производить измерения в электрических цепях нужно определиться со следующими вопросами, исходя из ответа на которые, выбирается измерительный прибор: -постоянный или переменный ток присутствует в данной электрической цепи. Если переменный - то какой именно (форма сигнала, частота); -какого порядка токи и напряжения имеются в данной цепи; -какая погрешность измерения будет нас удовлетворять.


1.5.1 Измерение напряжений Для измерения падения напряжения на каком либо участке цепи, параллельно ему подключают вольтметр с учетом полярности. Вольтметр обладает некоторым внутренним сопротивлением R v, следовательно, во время работы часть тока из электрической цепи пойдет через вольтметр, тем самым режим электрической цепи при подключении вольтметра изменится. Значит, результат измерения будет содержать погрешность. Рисунок Измерение падения напряжения на R 2 вольтметром


Напряжение на R 2, цепи, состоящей из источника и последовательно соединенных сопротивлений R 1 и R 2 без вольтметра: (1.13) где R вн - внутреннее сопротивление источника. Напряжение на R 2, цепи, состоящей из источника и последовательно соединенных сопротивлений R 1 и R 2 с вольтметром: (1.14) Если, то Для того чтобы вольтметр не влиял на исследуемую цепь, стараются делать внутреннее сопротивление вольтметра как можно большим.


1.5.2 Измерение токов Для измерения величины тока, протекающего через некоторый элемент цепи, последовательно с ним в разрыв ветви включают амперметр, с учетом полярности. Так как амперметр имеет некоторое сопротивление R A, включение его в электрическую цепь изменяет его режим, и результат измерения содержит погрешность. Рисунок Измерение тока амперметром


Сила тока в цепи, состоящей из источника и последовательно соединенных сопротивлений R 1 и R 2 без амперметра: (1.15) где R вн - внутреннее сопротивление источника. Сила тока в цепи, состоящей из источника и последовательно соединенных сопротивлений R1 и R2 с амперметром: (1.16) Где R вн - внутреннее сопротивление источника; R A - сопротивление амперметра. Для уменьшения погрешностей стараются делать сопротивления амперметров как можно меньшим.


1.5.3 Измерение мощностей Для измерения мощности, потребляемой каким либо элементом цепи, необходимо, чтобы измерительный прибор измерял падение напряжения на нем и ток через него и перемножал эти значения. Ваттметры имеют четыре входных зажима - два токовых и два по напряжению. Рисунок Схема включения ваттметра для измерения мощности, потребляемой R 2.


1.5.4 Мостовые схемы Мостовые схемы применяются для измерения сопротивлений. ac, cb, ad, bd - плечи моста. ab, cd - диагонали моста. Рисунок Мост Уитстона




Для измерения сопротивления уравновешенным мостом в одно из его плеч включают неизвестное сопротивление. Подстраивая какое-либо другое из плеч, с помощью известных сопротивлений, добиваются баланса моста (т.е. когда вольтметр показывает нуль). После этого находят неизвестное сопротивление. Для питания моста величина ЭДС Е существенного значения не имеет. Важно, чтобы не было ощутимого нагрева сопротивлений, и была бы достаточной чувствительность вольтметра. Сопротивление измерительного прибора также значения не имеет, т.к. в уравновешенном состоянии разность потенциалов точек c и d равна нулю, следовательно, ток через вольтметр не течет. Используются также неуравновешенные мосты, в них не выполняют подстраивание плеч, а величину неизвестного сопротивления отсчитывают по показаниям измерительного прибора со специально отградуированной шкалой. При измерении неуравновешенным мостом требуется стабилизировать ЭДС Е. (1.45)


1.5.5 Компенсационный метод измерения С помощью потенциометров измеряют величину ЭДС. Потенциометр устроен таким образом, что при измерении величины ЭДС E x входной ток отсутствует. Рисунок Потенциометр


Перед работой производят калибровку прибора: для этого переводят переключатель в положение. С помощью R I подстраивают рабочий ток в схеме так, чтобы падение напряжения на сопротивлении R равнялось бы величине ЭДС нормального элемента НЭ. При этом вольтметр должен показывать нуль. Для измерения ЭДС E X переключатель переводят в положение, с помощью отградуированного движка реохорда R p добиваются, чтобы вольтметр показывал нуль, и считывают показания прибора.


1.Понятие «Электрическая цепь» 2. Основные элементы электрической цепи 3.Что принято называть «цепями постоянного тока»? 4.Как характеризуется «источник ЭДС»? 5.От чего зависит напряжение на зажимах реального источника? 6.Как характеризуется «источник тока»? 7.Из закона Ома для полной цепи. 8.Расчетное определение проводимости. 9.Что характеризует «Электрическая мощность»? 10.Обобщенный закон Ома для участка цепи с ЭДС. 11.Последовательное соединение сопротивлений. 12.Параллельное соединение сопротивлений. 13.Замена источника тока источником ЭДС, характеристика. 14.Подключение измерительных приборов к электрическим цепям. 15.Измерение напряжений, методика. 16.Измерение токов, методика. 17.Измерение мощностей, методика. 18.Мостовые схемы 19.Компенсационный метод измерения КОНТРОЛЬНЫЕ ВОПРОСЫ Примечания, дополнения Участок электроцепи, вдоль которого протекает один и тот же ток, называется ветвью. Место соединения ветвей электроцепи называется узлом. На электросхемах узел обозначается точкой. Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром электрической цепи. Простейшая электрическая цепь имеет одноконтурную схему, сложные электрические цепи несколько контуров. Согласованный режим источника питания и внешней цепи возникает в том случае, когда сопротивление внешней цепи равно внутреннему сопротивлению. В этом случае ток в цепи в 2 раза меньше тока короткого замыкания. Самыми распространенными и простыми типами соединений в электрической цепи являются последовательное и параллельное соединение.


Элементами электрической цепи являются различные электротехнические устройства, которые могут работать в различных режимах. Режимы работы как отдельных элементов, так и всей электрической цепи характеризуются значениями тока и напряжения. Поскольку ток и напряжение в общем случае могут принимать любые значения, то режимов может быть бесчисленное множество. Режим холостого хода это режим, при котором тока в цепи нет. Такая ситуация может возникнуть при разрыве цепи. Номинальный режим бывает, когда источник питания или любой другой элемент цепи работает при значениях тока, напряжения и мощности, указанных в паспорте данного электротехнического устройства. Эти значения соответствуют самым оптимальным условиям работы устройства с точки зрения экономичности, надежности, долговечности и пр. Режим короткого замыкания это режим, когда сопротивление приемника равно нулю, что соответствует соединению положительного и отрицательного зажимов источника питания с нулевым сопротивлением. Ток короткого замыкания может достигать больших значений, во много раз превышая номинальный ток. Поэтому режим короткого замыкания для большинства электроустановок является аварийным.


Список литературы Основная 1.Основы теории цепей. Г. В. Зевеке, П. А. Ионкин, А. В. Нетушил, С. В. Страхов. М.: Энергоатомиздат, 1989, 528 с. 2.Теоретические основы электротехники. Том 1. Л. Р. Нейман, К. С. Димирчян Л.: Энергоиздат, 1981, 536с. 3.Теоретические основы электротехники. Том 2. Л. Р. Нейман, К. С. Димирчян Л.: Энергоиздат, 1981, 416с. 4.Теоретические основы электротехники. Электрические цепи. Л. А. Бессонов М.: Высш. шк., 1996, 638 с. Дополнительная 1.Основы теории электрических цепей. Татур Т. А. Высш. шк., 1980, 271 с Сборник задач и упражнений по теоретическим основам электротехники. /Под ред. П. А. Ионкина. М.: Энергоиздат, 1982, 768с Руководство по лабораторным работам по теории линейных цепей постоянного и синусоидального тока. /Под ред. В. Д. Эскова -Томск: ТПУ,1996,32с Руководство по лабораторным работам по установившимся режимам нелинейных цепей и переходным процессам в линейных цепях. /Под ред. В. Д. Эськова - Томск: ТПУ, 1997, 32 с.

1 слайд

2 слайд

Качественные задачи Изменятся ли показания амперметра и вольтметра, если ползунок реостата передвинуть в направлении стрелки? 1. Прежде всего, в такого рода задачах важно понимать, что напряжение на клеммах является постоянным. Если бы на схеме был нарисован источник тока (например, батарея), то это условие не выполнялось бы! Будьте внимательны! 2. При перемещении ползунка реостата влево, сопротивление реостата становится меньше – ток идет только по левой части реостата, она становится короче. Значит сопротивление всей цепи тоже становится меньше, т.к. реостат и резистор соединены последовательно. 4. Вольтметр показывает напряжение на резисторе. Т.к. сила тока во всей цепи одинакова, то через резистор потечет больший ток. Значит и напряжение на нем увеличится: U=I.R . Вольтметр покажет увеличение напряжения.

3 слайд

Качественные задачи Будет ли изменяться и как показание вольтметра, если ползунок реостата перемещать в направлении, указанном стрелкой? Напряжение на зажимах цепи поддерживается постоянным. Решите задачу самостоятельно. Проверьте ответ, нажав на эту надпись Напряжение не изменится

4 слайд

Вычисление общего сопротивления цепи Вычислите общее сопротивление цепи, изображенной на рисунке ВНИМАНИЕ! В такого рода задачах удобно пользоваться методом эквивалентных схем. Когда мы ищем «общее» сопротивление участка цеп, то мы ищем сопротивление резистора, действие которого в этой цепи было бы таким же. То есть сопротивление одного резистора было бы эквивалентно сопротивлению целого участка Величины: R1=R2=R3=15 Ом R4=25 Ом R5=R6=40 Ом

5 слайд

Вычисление общего сопротивления цепи Рассмотрим первый участок цепи. На нем все резисторы соединены параллельно и равны между собой. Значит, используя закономерности параллельного соединения, находим общее (эквивалентное) сопротивление участка: Теперь можно нарисовать эквивалентную схему, заменив весь первый участок резистором с сопротивление RI

6 слайд

Вычисление общего сопротивления цепи Рассмотрим третий участок цепи. На нем все резисторы соединены параллельно и равны между собой. Значит, используя закономерности параллельного соединения, находим общее (эквивалентное) сопротивление участка: Теперь можно нарисовать эквивалентную схему, заменив весь первый участок резистором с сопротивление RII

7 слайд

Вычисление общего сопротивления цепи Теперь схема преобразовалась в простую схему, в которой есть только три последовательно соединенных участка. Значит, используя закономерности последовательного соединения, находим общее (эквивалентное) сопротивление всей цепи: Ответ: общее сопротивление всей цепи равно 50Ом

8 слайд

Задача для самостоятельного решения Рассчитайте сопротивление первого участка RI. Проверьте результат, нажав на эту надпись RI=6 Ом

9 слайд

Задача для самостоятельного решения Рассчитайте сопротивление второго участка RII. Проверьте результат, нажав на эту надпись RI=6 Ом RII=2 Ом

10 слайд

Задача для самостоятельного решения Рассчитайте сопротивление второго третьего RIII. Проверьте результат, нажав на эту надпись RI=6 Ом RII=2 Ом RIII=4 Ом

11 слайд

Задача для самостоятельного решения Рассчитайте сопротивление второго четвертого участка RIV. Проверьте результат, нажав на эту надпись RI=6 Ом RII=2 Ом RIII=4 Ом RIV=2 Ом

14 слайд

Расчет электрической цепи Воспользуемся результатами расчета сопротивлений. Т.к. полное сопротивление цепи равно 4 Ом, то Такие токи текут в резисторах 1 и 4, следовательно, можно узнать напряжения на них: U1=U4=15В. Тогда напряжение на резисторе 7 равно: U7=U-U4-U1 =30В, а сила тока I7=7,5А. Такое же напряжение будет на всем участке, который мы называли RIII, сопротивление которого равно 4 Ом. Значит через резисторы 2 и 5 течет ток также равный I2= I5= 7,5А I=15А, U=60В U1=U4=15В I1=I4=15А I7=7,5А, U7=30В I2= I5= 7,5А U2= U5= 7,5В Самостоятельно проделайте аналогичные рассуждения для остальных участков и убедитесь в том, что через резисторы 3, 6 и 9 течет ток 2,5 А, а через резистор 8 – 5 А. Напряжение на резисторе 8 – 15 В, на резисторах 3 и 6 – 2,5 В и на резисторе 9 – 10 В.

Закон Ома. Электрическая цепь. Закон Ома для участка цепи. Электрическая цепь и электрическая схема. Наш огород на участке. Цепи питания. Законы постоянного тока. Закон Ома для полной цепи. Закон полного тока. Круговые процессы. Учебно-опытный участок. Электрические цепи и их элементы. Основы теории цепей. Источники и потребители тока.

Георг Симон Ом. Закон ома для участка электрической цепи. Скованы одной цепью, связаны одной целью. Поток энергии и цепи питания. Параметры элементов электрической цепи. Тема урока: Закон Ома. Основы теории электрических цепей. Пришкольный учебно-опытный участок. Применение закона Ома для участка цепи. Законы постоянного тока для участков цепи.

Обслуживающие цепи. Электрическая цепь и её составные части. Пищевые цепи и экологические пирамиды. Цепи питания и потоки энергии в экосистемах. Урок по теме: "Электрические цепи и их элементы ". ИЗМЕРЕНИЕ ПАРАМЕТРОВ ВОЗДУШНЫХ ПОТОКОВ. Тема урока: Закон Ома для участка цепи. Презентация к уроку физики в 8 классе на тему: «Электрическая цепь и её составные части».

Расчет и анализ процессов в электрических цепях. Особенности изучения закона Ома для участка цепи. Применение закона Ома для участка цепи при решении задач. Расчет сложных цепей постоянного тока по I и II законам Кирхгофа. Этапы установления Оренбургского участка российско-казахстанской границы. Методические и практические аспекты применения закона №44-ФЗ (о контрактной системе).

Общая физическая подготовка по средствам круговой тренировки на уроке по волейболу в 8 классе. Всего на территории Кувшиновского района выявлено и разведано 25 месторождений и участков песчано-гравийного материала, 60 месторождений торфа и 2 месторождения сапропеля.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

ЭЛЕКТРИЧЕСКИЙ ТОК Электрическая цепь и её составные части У читель физики ГБОУ СОШ №966 Никулина Е.В.

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ Электрическая цепь - совокупность устройств, по которым течет электрический ток.

Составные части простейшей электрической цепи: Потребитель электрического тока Источник тока Ключ, выключатель Соединительные провода

Устройства, которые используют электрическую энергию, называются потребителями.

Источники тока

Роль выключателя – замыкать и размыкать электрическую цепь.

Источник тока подсоединяют в цепь в последнюю очередь с помощью соединительных проводов. В каждом доме, и квартире, И в любимой вами школе Хорошо известно вам Ток течет по ………..

Электрические схемы Электрические схемы – это чертежи, на которых показано, как электрические приборы соединены в цепь.

1.Источник тока В калькуляторе, в часах Ей везде найдется дело. Плохо, если вдруг она Почему-то сразу села. Ты ответа не жалей-ка что же это?

2 .Батарея источников тока

3 . Лампа Что как солнышко сияет И дорогу освещает? Вот какая лапочка Золотая ………… !

5. Резистор

6. Ключ Он замкнет любую цепь, Невелик он, но могуч! Остановит вмиг конвейер, Даже открывает двери! Что это такое?

Электрическая схема

Техника безопасности Начинаем электричество, с вами дети изучать, Только технику безопасности надо строго соблюдать. Не вставайте из-за парты, есть вопросы, так спроси, Но не Петю и не Сашу, а учителя зови. Все приборы аккуратно на столах своих расставь,

Убедись, что ключ разомкнут и тогда соединяй! Подключая батарейку, на полярность посмотри, Потому что амперметру может и не повезти. Ну а если вы ребята вдруг забудете наказ, То читайте все на стенде еще много-много раз.

Собрать Электрическую цепь по схеме


По теме: методические разработки, презентации и конспекты

Презентация "Электрическая цепь и ее составные части"

Данный материал может быть использован на уроке физики в 8 классе по теме "Электрическая цепь и ее составные части" при изучении или повторении данной темы....

Презентация "Электрическая цепь и её составные части"

Данная презентация предназначена для учащихся 10 класса коррекционной школы I,II вида. Она может быть использована на уроках физики в 8 классе общеобразовательной школы...

Презентация "Физический диктант. Электрическая цепь и её составные части"

Презентация для урока физики в 8 классе "Физический диктант. Электрическая цепь и её составные части".Диктант содержит не только вопросы о электрических цепях, но и вопросы на повторение.С помощью это...