Нелинейные элементы и их характеристики. Реферат: Нелинейные элементы Линейным или нелинейным является полупроводниковый диод

19.11.2021 Обзоры 

Классификация нелинейных элементов

Нелинейные цепи - это цепи, в которых есть хотя бы один нелинейный элемент. Нелинейный элемент - это элемент, для которого связь тока и напряжения задают нелинейным уравнением.

В нелинейных цепях не выполняется принцип наложения, и поэтому нет общих методов расчёта. Это вызывает необходимость разработки специальных методов расчета для каждого типа нелинейных элементов и режима их работы.

Нелинейные элементы классифицируют:

1) по физической природе: проводниковые, полупроводниковые, диэлектрические, электронные, ионные и т.д.;

2) по характеру делят на резистивные, емкостные и индуктивные;

ВАХ КВХ ВАХ

3) по виду характеристик все элементы делят

На симметричные и несимметричные. Симметричные - это такие, у которых характеристика симметрична относительно начала координат. Для не симметричных элементов раз и навсегда выбирают положительное направление напряжения или тока и для них в справочниках приводится ВАХ. Только такое направление можно использовать при решении задач с использованием этих ВАХ.

На однозначные и неоднозначные. Неоднозначные, когда одному значению тока или напряжения на ВАХ соответствуют несколько точек;

4) инерционные и безынерционные элементы. Инерционными элементами называют такие элементы, у которых нелинейность обусловлена нагревом тела при прохождении тока. Т. к. температура не может изменяться сколь угодно быстро, то при прохождении по такому элементу переменного тока с достаточно высокой частотой и неизменным действующим значением, температура элемента остается практически постоянной в течение всего периода изменения тока. Поэтому для мгновенных значений элемент оказывается линейным и характеризуется какой-то постоянной величиной R (I,U). Если же изменится действующее значение тока, то изменится температура и получится другое сопротивление, т. е. для действующих значений элемент станет нелинейным.

5) управляемые и неуправляемые элементы. Выше мы говорили о неуправляемых элементах. К управляемым элементам относят элементы с тремя и более выводами, у которых, изменяя ток или напряжение на одном выводе, можно менять ВАХ относительно других выводов.

Параметры нелинейных элементов и некоторые схемы их замещения

В зависимости от конкретной задачи удобно применять те или иные параметры элементов и общее число их велико, но чаще всего используют статические и дифференциальные параметры. Для резистивного двухполюсного элемента это будут статическое и дифференциальное сопротивления.

В заданной точке ВАХ

В заданной рабочей точке ВАХ

1. Дают небольшое приращение напряжения. Находят по ВАХ, вызванное этим приращением, приращение тока и берут их отношение. Недостатком этого способа является то, что для повышения точности расчета нужно уменьшать U и I, но при этом трудно работать с графиком.

2. К заданной точке кривой проводят касательную и тогда по геометрическому определению производной, получают

Где приращения берут на этой касательной и могут быть сколь угодно большими.

Если известен режим работы нелинейного элемента, то в этой точке известно его статическое сопротивление, а также напряжение и ток, поэтому его можно заменить одним из 3-х способов.


Если известно, что во время работы цепи ток и напряжение меняются в пределах «более-менее прямолинейного участка ВАХ», то этот участок описывают линейным уравнением и ставят ему в соответствие такую эквивалентную схему.

Линеаризуют этот участок уравнением вида U=a+ib.Получают для него коэффициенты уравнения.

При i=0 и U=U 0 =а,

усреднённое значение на этом участке.

Тогда, что соответствует следующей схеме замещения:


Эта схема будет справедлива для участка, ограниченного волнистой линией.

То же самое выражение можно записать по-другому:

Поэтому в некоторых задачах, где заранее известно, что токи и напряжения нелинейного элемента представляют в виде суммы постоянной составляющей Uрт, Iрт и переменной составляющей u ~ , i ~ c амплитудой << чем величина постоянной составляющей, отдельно рассчитывают режим на постоянном токе (напряжении) и отдельно для переменной составляющей. Из записей видно, что двухполюсный элемент для малой переменной составляющей можно заменить просто дифференциальным сопротивлением в рабочей точке.

Этот же подход применяют и в схемах с многополюсными элементами, но там не удаётся ввести только одно сопротивление, т. к. Ч. П. характеризуются четырьмя коэффициентами уравнений. Но можно найти эти коэффициенты для малых переменных составляющих токов и напряжений.

Пример: Биполярный транзистор (схема с общим эмиттером).

Пусть известно, что u j =U p ф+u kj , i j =I p ф+i kj

Схема замещения:

Применим дифференцирующие параметры и получим в форме «И».

u бк =h 21 i б +h 12 u кэ

i кэ =h 21 i б +h 22 u кэ

U бэ =H 11 I б +H 21 U кэ

Эти уравнения пишут для переменных составляющих, потому что изменяется процедура расчета элементов.

H 11 =U бэ /I б при I б =0, т.е. i б =I бр.т.

H 12 =U бэ /U кэ при I б =0

H 21 =I к /I б при U кэ =0

H 22 =I к /U кэ при I б =0, т.е. i б =I бр.т.

h 12 =ДU бэ /ДU кэ h 21 =Дi к /Дi б h 22 =Дi к /Дu кэ,

где I, U есть приращения токов и напряжений в окрестности рабочей точки.

Вольтамперные характеристики данного нелинейного элемента.

Методы расчёта нелинейных цепей постоянного тока

Различают: численные, аналитические и графические методы.

1) Численные - это методы численного решения нелинейных уравнений. Обычно используют ЭВМ. Они позволяют решить широкий круг задач, но ответ получается в виде числа.

2) Аналитические - это методы, в основе которых лежит аппроксимация ВАХ какой-нибудь подходящей функции. Если эта функция нелинейная, то получается нелинейная система уравнений. Чтобы она могла быть решена, приходиться очень аккуратно выбирать аппроксимирующую функцию.

Те элементы электрической цепи, для которых зависимость тока от напряжения I(U) или напряжения от тока U(I), а также сопротивление R, постоянны, называются линейными элементами электрической цепи. Соответственно и цепь, состоящая из таких элементов, именуется линейной электрической цепью.

Для линейных элементов характерна линейная симметричная вольт-амперная характеристика (ВАХ), выглядящая как прямая линия, проходящая через начало координат под определенным углом к координатным осям. Это свидетельствует о том, что для линейных элементов и для линейных электрических цепей строго выполняется.

Кроме того речь может идти не только об элементах, обладающих чисто активными сопротивлениями R, но и о линейных индуктивностях L и емкостях C, где постоянными будут зависимость магнитного потока от тока - Ф(I) и зависимость заряда конденсатора от напряжения между его обкладками - q(U).

Яркий пример линейного элемента - . Ток через такой резистор в определенном диапазоне рабочих напряжений линейно зависит от величины сопротивления и от приложенного к резистору напряжения.


Нелинейные элементы

Если же для элемента электрической цепи зависимость тока от напряжения или напряжения от тока, а также сопротивление R, непостоянны, то есть изменяются в зависимости от тока или от приложенного напряжения, то такие элементы называются нелинейными, и соответственно электрическая цепь, содержащая минимум один нелинейный элемент, окажется .

Вольт-амперная характеристика нелинейного элемента уже не является прямой линией на графике, она непрямолинейна и часто несимметрична, как например у полупроводникового диода. Для нелинейных элементов электрической цепи закон Ома не выполняется.

В данном контексте речь может идти не только о лампе накаливания или о полупроводниковом приборе, но и о нелинейных индуктивностях и емкостях, у которых магнитный поток Ф и заряд q нелинейно связаны с током катушки или с напряжением между обкладками конденсатора. Поэтому для них вебер-амперные характеристики и кулон-вольтные характеристики будут нелинейными, они задаются таблицами, графиками или аналитическими функциями.

Пример нелинейного элемента - лампа накаливания. С ростом тока через нить накаливания лампы, ее температура увеличивается и сопротивление возрастает, а значит оно непостоянно, и следовательно данный элемент электрической цепи нелинеен.


Для нелинейных элементов свойственно определенное статическое сопротивление в каждой точке их ВАХ, то есть каждому отношению напряжения к току, в каждой точке на графике, - ставится в соответствие определенное значение сопротивления. Оно может быть посчитано как тангенс угла альфа наклона графика к горизонтальной оси I, как если бы эта точка лежала на линейном графике.

Еще у нелинейных элементов есть так называемое дифференциальное сопротивление, которое выражается как отношение бесконечно малого приращения напряжения - к соответствующему изменению тока. Данное сопротивление можно посчитать как тангенс угла между касательной к ВАХ в данной точке и горизонтальной осью.

Такой подход делает возможным простейший анализ и расчет простых нелинейных цепей.

На рисунке выше показана ВАХ типичного . Она располагается в первом и в третьем квадрантах координатной плоскости, это говорит нам о том, что при положительном или отрицательном приложенном к p-n-переходу диода напряжении (в том или ином направлении) будет иметь место прямое либо обратное смещение p-n-перехода диода. С ростом напряжения на диоде в любом из направлений ток сначала слабо увеличивается, а после резко возрастает. По этой причине диод относится к неуправляемым нелинейным двухполюсникам.

На этом рисунке показано семейство типичных ВАХ в разных условиях освещенности. Основной режимом работы фотодиода - режим обратного смещения, когда при постоянном световом потоке Ф ток практически неизменен в довольно широком диапазоне рабочих напряжений. В данных условиях модуляция освещающего фотодиод светового потока, приведет к одновременной модуляции тока через фотодиод. Таким образом, фотодиод - это управляемый нелинейный двухполюсник.

Это ВАХ , здесь видна ее явная зависимость от величины тока управляющего электрода. В первом квадранте - рабочий участок тиристора. В третьем квадранте начало ВАХ - малый ток и большое приложенное напряжение (в запертом состоянии сопротивление тиристора очень велико). В первом квадранте ток велик, падение напряжения мало - тиристор в данный момент открыт.

Момент перехода из закрытого - в открытое состояние наступает тогда, когда на управляющий электрод подан определенный ток. Переключение из открытого состояния - в закрытое происходит при снижении тока через тиристор. Таким образом, тиристор - это управляемый нелинейный трехполюсник (как и транзистор, у которого ток коллектора зависит от тока базы).

Характеристики большинства реальных элементов в той или иной степени нелинейны. В одних случаях нелинейность элементов невелика и при построении упрощенной модели ею можно пренебречь, в других – нелинейностью пренебречь нельзя. Более того, функционирование большинства радиоэлектронных устройств, невозможно без нелинейных элементов (выпрямление, умножение, ограничение, генерирование и т.д.).

Реальные нелинейные элементы подразделяются на безинерционныеи инерционные. Если зависимость между мгновенными значениями тока и напряжения элементов при периодическом воздействии определяется статической вольт - амперной характеристикой (ВАХ), то элемент относится к безинерционнымнелинейным элементам. Если статическая ВАХ и динамическая, снятая при частоте, равной или меньшей рабочей, не совпадают, то такой элемент следует рассматривать какинерционный.

Таким образом, инерционный нелинейный элемент является линейным относительно мгновенных значений тока и напряжения, а ВАХ, связывающая действующие значения оказывается нелинейной. Безинерционные элементы являются нелинейными как в отношении мгновенных значений , , так и в отношении действующих и .

В зависимости от числа внешних выводов различают нелинейные элементы двухполюсные (диоды, термисторы) имногополюсные (транзисторы, триоды, пентоды). Вольт - амперная характеристика нелинейного двухполюсного элемента может быть симметричной или несимметричной. ВАХ двухполюсника с симметричной характеристикой представлена на рис.1. Для нее выполняется условие:

Очевидно, что режим работы нелинейной цепи не изменится, если выводы нелинейного элемента с симметричной характеристикой поменять местами. Если условие (1) не выполняется, ВАХ – несимметрична.

Отношение напряжения, измеряемого отрезком АВ к току, измеряемому отрезком ОВ (см.рис.1.), определяет в некотором масштабе статическое сопротивление R в точке А.

(2)

Предел отношения приращения напряжения на участке цепи к приращению тока в нем или производная от напряжения по току в том же масштабе , определяет дифференциальное сопротивление:

Различают нелинейные элементы с монотоннойи немонотоннойВАХ. Для монотонныхВАХ или всегда больше нуля.

Немонотонные характеристики разделяются на N-и S-типы. У элементов с N-образной характеристикой (рис. 2.а) одному и тому же значению тока может соответствовать несколько различных напряжений. У S-образнойВАХ одному значению напряжения может соответствовать несколько токов (рис. 2.б).

Рис.2. ВАХ различных нелинейных элементов

а) немонотонная N-типа; б) немонотонная S – типа;

в) ВАХ неэлектрически управляемого двухполюсника - термистора.

Вид ВАХ нелинейного элемента может зависеть от некоторой величины, не связанной с токами и напряжениями цепи, в которую включен элемент, в частности от температуры (рис. 2.в), освещенности, давления и т.д. Такие элементы относятся кнеэлектрически управляемым двухполюсникам.

Рис.3. Электрически управляемый элемент

Л11 НЕЛИНЕЙНЫЕ ЦЕПИ

Темы СРСП

Подготовка к измерениям, уход за приборами. [Л1], стр.135-140.

Основная литература

1. М.С.Стернзат и А.А.Сапожников, Метеорологические приборы, наблюдения и их обработка, Л, ГМИ, 1959 г.

2.О.А.Городецкий, И.И.Гуральник, В.В.Ларин, Метеорология, методы и технические средства наблюдений, ГМИ, Л, 1984

Дополнительная литература

1. Наставления гидрометеорологическим станциям и постам, ч.1, Алматы, 2002 г.

2. А.В.Капустин, Н.П.Сторожук, Технические средства гидрометеорологической службы, СП, 2005

3. Н.П.Фатеев, Поверка метеорологических приборов, ГМИ, Л, 1975

4. Руководство по поверке метеорологических приборов, ГМИ, Л, 1967

Свойства элементов электрической цепи (сопротивления, индуктивности, емкости) описываются их статическими характеристиками. Статической характеристикой активного сопротивления является его вольтамперная характеристика. Для индуктивности статической характеристикой является вебер-амперная характеристика: зависимость между током i и магнитным потоком Ф. Статическая характеристика емкости представляет собой зависимость между зарядом q и напряжением u c . Она называется кулон-вольтной характеристикой.

Статическая характеристика элемента цепи выражается некоторой функциональной зависимостью y=f(x).

Функцию у можно рассматривать как отклик на воздействие х.

Статическим параметром элемента цепи называют отношение

Дифференциальный параметр равен

Дифференциальный параметр часто называют крутизной (S)

Так как у=рх, то

Параметры линейных элементов не зависят от режима работы т.е. от величины воздействия х.

Поэтому статическая характеристика линейного (пассивного) эле­мента представляет собой прямую, проходящую через начало координат (рис. 9.1.), а дифференциальный параметр – прямую, параллельную оси х (рис. 9.2.).

Рис. 9.1. Статическая характеристика линейного элемента

Рис. 9.2. Дифференциальный параметр линейного элемента

Значения статического и дифференциального параметров линейного элемента совпадают, т.е.

где m y и m x - масштабы по х и у, при m y =m x P=P d =tga.

Для нелинейного элемента характерно то, что его параметры зависят от режима работы, т.е. от величины воздействия х.

Нарисуем статическую характеристику какого-то Н.Э. (рис. 9.З).

Рис. 9.3. Статическая характеристика Н.Э.

В какой-либо произвольной точке характеристики m, статический параметр определяется углом a - наклона секущей, проведенной из начала координат в точку m (рис. 9.3).

Если m х =m y , то P=tga.

Дифференциальный параметр (крутизна) в той же точке пропорцио­нальна тангенсу угла b между касательной к кривой в данной точке и осью х (рис. 9.3).



Нелинейными электрическими элементами (НЭ) цепи называются элементы, параметры которых зависят от напряжений, токов, магнитных потоков и других величин. Параметры объектов, представленных электрической цепью практически всегда нелинейны, но если степень выраженности этой нелинейности невелика, то их считают линейными. Если же пренебречь нелинейностью нельзя, то анализ процессов в цепи проводят с учетом реальных характеристик элементов.

В настоящее время нелинейные элементы получили очень широкое распространение, т.к. с их помощью решаются задачи принципиально неразрешимые на базе линейных объектов. К ним относятся такие задачи, как выпрямление переменного тока, стабилизация тока и напряжения, преобразование формы сигналов, усиление и др.

При изучении линейных электрических цепей было отмечено, что для анализа электромагнитных процессов используются три основных параметра , и . У линейных элементов эти отношения постоянны, у нелинейных – зависят от тока или напряжения.

Нелинейные резисторы характеризуются вольт-амперными характеристиками ; индуктивности – вебер-амперными , а емкости – кулон-вольтными . Эти характеристики могут задаваться в виде таблиц, графиков или аналитических функций.

Самое широкое распространение в технике получили нелинейные резисторы, поэтому в дальнейшем мы остановимся на вольт-амперных характеристиках (ВАХ), но все рассмотренные принципы и методы анализа могут быть использованы также для цепей с нелинейными индуктивностями и емкостями.


На рисунке а показана ВАХ полупроводникового диода. Она имеет ветви в первом и третьем квадрантах, соответствующие положительному и отрицательному направлениям приложенного напряжения, называемые характеристиками прямого и обратного смещения. С увеличением напряжения на диоде в обоих направлениях вначале ток увеличивается очень мало, а затем происходит его резкое увеличение. Этот элемент относится к неуправляемым нелинейным двухполюсникам .

На рисунке б приведены характеристики фотодиода при различных освещенностях. Основным режимом работы фотодиода является режим обратного смещения, в котором при постоянном световом потоке (Ф) ток остается практически неизменным в широком диапазоне изменения напряжения. Модуляция светового потока, освещающего фотодиод, будет приводить к модуляции протекающего тока. Таким образом, фотодиод является управляемым нелинейным двухполюсником

Третьим НЭ, ВАХ которого показана на рис. в, является тиристор. Это управляемый НЭ, т.к. его ВАХ зависит от величины тока управления . Рабочим участком характеристик является первый квадрант. Начальный участок характеристик соответствует малым токам при больших напряжениях, т.е. большому сопротивлению или закрытому состоянию, а конечный – большим токам при малых напряжениях (малому сопротивлению или открытому состоянию). Переход из закрытого состояния в открытое происходит при подаче на управляющий вход соответствующего тока. Обратный переход происходит при снижении протекающего тока.

Другим управляемым НЭ является полупроводниковый транзистор (рис. г). Он работает при прямом смещении и протекающий через него ток зависит от величины тока базы .

Тиристор и транзистор относятся к группе управляемых нелинейных трехполюсников , т.к. включаются в электрическую цепь тремя точками. Поэтому при анализе цепей с управляемыми трехполюсниками требуются минимум две группы ВАХ относительно какой-либо общей точки прибора.