Детали и размеры контактной сети. Проектирование контактной сети. Технологический процесс комплексной проверки и ремонта консоли

22.04.2021 Новости

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Введение

На электрифицированных линиях электроподвижной состав получает питание через контактную сеть от тяговых подстанций, расположенных на таком расстоянии между ними, чтобы было обеспечено стабильное номинальное напряжение на электроподвижном составе и работала защита от токов короткого замыкания.

Контактная сеть является наиболее ответственной составной частью электрифицированных железных дорог. Контактная сеть должна обеспечивать надежное и бесперебойное снабжение электроэнергией подвижного состава в любых климатических условиях. Устройства контактной сети конструируют таким образом, чтобы они не ограничивали скорость, установленную графиком движения поездов, и обеспечивали бесперебойный токосъем при экстремальных температурах воздуха, в период наибольших гололедных образований на проводах и при максимальной скорости ветра в районе, где расположена дорога. Контактная сеть в отличие от всех других устройств системы тягового электроснабжения не имеет резерва. Поэтому к контактной сети предъявляют высокие требования, как по совершенствованию конструкций, так и по качеству выполнения монтажных работ и тщательному содержанию в условиях эксплуатации.

Контактная сеть представляет собой контактной подвеску, расположенную в правильном положении относительно оси пути с помощью поддерживающих, фиксирующих устройств, которые в свою очередь закреплены на опорных конструкциях.

Контактная подвеска в свою очередь состоит из несущего троса и присоединенного к нему посредством струн контактного провода (или двух контактных проводов).

На главных путях в зависимости от категории линии, а также на станционных путях, где скорость движения поездов не превышает 70 км/ч, должна применяется полукомпенсированная цепная подвеска (КС-70) со смещенными от опор на 2--3 м вертикальными струнами и сочлененными фиксаторами.

На главных и приемо-отправочных путях, по которым предусматривается безостановочный пропуск поездов со скоростью до 120 км/ч, используется полукомпенсированная рессорная подвеска КС-120 или компенсированная КС-140.

На главных путях перегонов и станций при скорости движения поездов более 120 (до 160) км/ч применяют, как правило, компенсированную рессорную подвеску с одним или двумя контактными проводам КС-160. На действующих электрифицированных линиях допускается до обновления или реконструкции эксплуатация полукомпенсированных рессорных подвесок КС-120 с сочлененными фиксаторами и компенсированных рессорных подвесок КС-140 -- 160 км/ч.

На железных дорогах РФ существует несколько типов основных контактных подвесок, каждая подвеска выбирается для разных условий работы транспорта (скорость, токовые нагрузки, климатические и другие местные условия) на основании технико-экономического сравнения вариантов. При этом учитывается возможное в перспективе повышение скоростей и размеров движения поездов и массы грузовых поездов.

Опоры контактной сети в зависимости от назначения и характера нагрузок, воспринимаемых от проводов контактной подвески, разделяют на промежуточные, переходные, анкерные и фиксирующие.

Промежуточные опоры воспринимают нагрузки от массы проводов контактных подвесок и дополнительных нагрузок на них (гололед, изморозь) и горизонтальные нагрузки от давления ветра на провода и от изменения направления проводов на кривых участках пути.

Переходные опоры устанавливаются в местах устройства сопряжений анкерных участков контактных подвесок и воздушных стрелок и воспринимают нагрузки, аналогичные промежуточным опорам, но от двух контактных подвесок. На переходные опоры также воздействуют усилия от изменения направления проводов при отводе их на анкеровку и на стрелочной кривой.

Анкерные опоры могут воспринимать только нагрузки от натяжения закрепленных на них проводов или, кроме того, нести такие же нагрузки, как промежуточные, переходные или фиксирующие опоры.

Фиксирующие опоры не несут нагрузок от массы проводов и воспринимают только горизонтальные нагрузки от изменения направления проводов на кривых участках пути, на воздушных стрелках, при отходах на анкеровку и от давления ветра на провода.

По типу закрепляемых на опорах поддерживающих устройств контактной сети различают:

Консольные опоры с креплением на консоли контактной подвески одного, двух или нескольких путей;

Опоры с жесткой поперечиной, или, как их называют, ригельные или портальные, с креплением контактных подвесок электрифицируемых путей на жесткой поперечине (ригеле);

Опоры с гибкой поперечиной с креплением на ней контактных подвесок перекрываемых этой поперечиной электрифицируемых путей.

Для трассировки контактной сети на однопутных и двухпутных участках (перегонах) применяют струнобетонные конические опоры высотой 13,6 м и толщиной стенки бетона 60 мм типа С для участков переменного тока и СО для участков постоянного тока. В последнее время на постоянном и переменном токе внедряются опоры СС, ССА (Рис.1).

Стойки этих опор представляют собой полые конические бесстыковые трубы из предварительно напряжённого железобетона с армированием высокопрочной проволокой. Поперечное армирование принято в виде спирали. Для предотвращения стягивания продольной арматуры при навивке спирали по длине стоек предусмотрена установка монтажных колец.

В нижней части опор предусмотрено смешанное армирование - т.е. с установкой дополнительных стержней ненапрягаемой арматуры: у опор с высотой стойки 10,8 м на 2 метра от низа опоры, у опор высотой 13,6 м - на 4 метра. Смешанное армирование повышает трещиностойкость опор.

Важнейшей характеристикой опор является их несущая способность - допустимый изгибающий момент М0 на уровне условного обреза - УОФ, который находится на 500 мм ниже уровня головки рельса (УГР). По несущей способности подбирают типы опор для применения в конкретных условиях установки.

Рисунок 1

Железобетонные стойки имеют отверстия: в верхней части - для закладных деталей опор, в нижней - для вентиляции (для уменьшения влияния перепада температур наружной и внутренней поверхностей).

Для установки железобетонных опор применяют стаканные фундаменты типа ДС-6 и ДС-10. Фундаменты ДС состоят из двух основных конструктивных частей: верхней - стакана и нижней - фундаментной части. Верхняя часть представляет собой железобетонный стакан прямоугольного сечения. Нижняя часть фундаментов ДС имеет двутавровое сечение. Сопряжение верха фундамента с нижней двутавровой частью выполнено в виде пирамидального конуса.

Для закрепления оттяжек анкерных железобетонных опор в грунте использованы двутавровые анкеры типа ДА-4,5. Анкеры изготовлены таких же размеров, как фундамент ДС, но без стаканной части. Для закрепления оттяжек в верхней части анкера заложены проушины из полосовой стали.

Заземление опор контактной сети выполнено индивидуальными заземляющими проводниками, присоединёнными к тяговым рельсам с использованием искровых промежутков, а также тросом группового заземления для опор, стоящих за платформой.

Выбор опор начинают, как правило, с расчёта и подбора опор для кривых участков пути, т.к. эти условия установки опор являются наиболее отягощёнными, особенно в кривых малых радиусов.

Для расчёта необходимо составить расчётную схему, показав на ней все силы, действующие на опору, и плечи этих сил относительно точки пересечения оси опоры с УОФ. Расчет суммарных изгибающих моментов в основании опор определяют для трех расчетных режимов по нормативным нагрузкам: в режимах гололеда с ветром, максимального ветра, минимальной температуры. По наибольшему из полученных моментов и выбирают опору для установки.

Для поддержания проводов на заданном уровне от головки рельсов служат поддерживающие устройства - кронштейны с тягами, называемые консолями, которые классифицируются:

По числу перекрываемых путей --однопутные, в соответствии с рисунком 2 (а, б, в); двухпутные, в соответствии с рисунком 2 (г, д); в некоторых случаях трехпутные;

По форме -- прямые, изогнутые, наклонные;

По наличию изоляции -- неизолированные и изолированные.

Рисунок 2 - Консоли контактной сети: а - изогнутая наклонная консоль; б - прямая наклонная консоль; в - прямая горизонтальная; г - двухпутная горизонтальная с одной фиксаторной стойкой; д - двухпутная горизонтальная с двумя фиксаторными стойками; 1 - кронштейн; 2 - тяга; 3 - опора; 4 - фиксаторная стойка

Консоли, используемые для крепления проводов цепной контактной подвески, как правило, выбирают однопутные - исключающие механическую связь с другими подвескам. По степени изоляции они могут быть неизолированные от опоры контактной сети, и изолированные. По типу расположения кронштейна бывают наклонные, изогнутые и горизонтальные консоли. Наклонные изолированные консоли независимо от габарита опоры оборудуют подкосами.

При трассировке контактной сети тип консолей выбирают в зависимости от вида опорного устройства (консольная опора, жесткая поперечина), габарита, места установки (прямой участок, внутренняя или внешняя сторона кривой) и назначения опоры (промежуточная, переходная), а также действующих на консоли нагрузок. При подборе консольных устройств для переходной опоры необходимо учитывать вид сопряжения анкерных участков контактных подвесок, расположение рабочей и анкеруемой ветвей подвески относительно опоры и какая из ветвей крепится на данной консоли.

Консоль состоит из кронштейна, тяги и подкоса; она крепится к опоре шарнирно с помощью пяты и удерживается на опоре с помощью тяги. Пяты консолей и тяг могут быть поворотными и неповоротными; консоли, имеющие также поворотные узлы, называют поворотными. Тяги консолей в зависимости от направления приложения нагрузок могут быть растянутые и сжатые.

Однопутные консоли могут быть: неизолированные, когда изоляторы расположены между несущим тросом и кронштейном и в фиксаторе; изолированные, в соответствии с рисунком 4, когда изоляторы вмонтированы в кронштейн, тягу и подкос у опоры; изолированные с усиленной (двойной) изоляцией, у которых изоляторы имеются как в кронштейне, тяге и подкосе у опор, так и между несущим тросом и кронштейном.

В последние годы устанавливают изолированные (Рис.3) или неизолированные сдвоенные прямые наклонные консоли (Рис.4) при нормальных и увеличенных габаритах, кронштейн которых имеет прямую форму и состоит из двух швеллеров с соединительными планками или из труб.

Рисунок 3 - Изолированная наклонная однопутная консоль: 1 - кроштейн; 2 - тяга (растянутая); 3 - регулировочная пластина; 4 - бугель с серьгой пластинчатый; 5 - тяга (сжатая); 6 - регулировочная труба; 7 - кронштейн фиксаторный; 8 - подкос

Рисунок 4 - Неизолированные прямые наклонные консоли: 1 - регулируемая вставка; 2 - тяга консоли; 3 - бугель; 4 - кронштейн прямой; 5 - фиксаторные кронштейны; 6 - фиксаторы

Динамическая устойчивость к нажатию токоприемника достигается более совершенной конструкцией контактной подвески. Вертикальность подвески КС-200 с фиксированным положением относительно оси пути несущего троса обеспечивает большую ветровую и динамическую устойчивость, чем традиционные подвески для крепления несущего троса главных путей с зигзагом, соответствующим зигзагу контактного провода; применены изолированные горизонтальные с подкосом консоли из стальных оцинкованных или алюминиевых труб с закреплением несущего троса в поворотном опорном седле, подвешенном на горизонтальном стержне консоли. Конструкция консолей разработана для габаритов 3,3--3,5 м; 4,9 м; 5,7 м и обеспечивает удобство, быстроту и точность их сборки. Дополнительные фиксаторы -- из алюминиевого профиля, без ветровых струн; стойки сочлененных фиксаторов -- стальные, оцинкованные. Однопутные изолированные консоли компенсированной контактной подвески главных путей на перегонах и станциях устанавливаются на опорах или на жестких поперечинах на консольных стойках.

Рисунок 5 - Негоризонтальная изолированная консоль

Для контактной сети переменного тока как правило применяют изолированные консоли, а для контактной сети постоянного тока - неизолированные.

Прямые наклонные неизолированные консоли из двух швеллеров обозначаются буквами НР (Н - наклонная, Р - растянутая тяга) или НС (С - сжатая тяга), из трубы - буквами НТР (Т - трубчатая) и НТС.

Изолированные консоли из трубы обозначают ИТР (И - изолированная) или ИТС, а из швеллеров - ИС или ИР. Римская цифра указывает на номер типа консоли по длине кронштейна, арабские цифры - на номер швеллера, из которого изготовлен кронштейн консоли, буква п - на наличие подкоса, буква у - на усиленную изоляцию. Наклонные изолированные консоли независимо от типа и габарита опоры должны быть оборудованы подкосами.

На многопутных участках железной дороги (станиях), а также в случае установки опор с увеличенным габаритом в выемках за кюветом, применяют жесткие поперечины. Жесткие поперечины (ригели) представляют собой металлические фермы с параллельными поясами и раскосой треугольной решеткой с распорками в каждом узле. Для усиления в узлах устанавливают еще одну распорку по диагонали. Отдельные блоки фермы стыкуют между собой накладками из угловой стали (приварными или болтовыми). В зависимости от количества путей, перекрываемых жесткими поперечинами, они могут иметь длину от 16,1 до 44,2 м и собираться из двух, трех и четырех блоков. Жесткие поперечины расчетной длиной более 29,1 м, на которые устанавливаются прожекторы для освещения путей станций, оборудуются настилом и перильным ограждением. Ригели жестких поперечин рамного типа установлены на железобетонных стойках типа С и СА длиной 13,6м и 10,8 м.

Устройства, с помощью которых контактные провода удерживаются в горизонтальной плоскости в требуемом положении относительно оси пути (оси токоприемника), называются фиксаторами.

На главных путях перегонов и станций и приемоотправочных путях, где скорость движения превышает 50 км/ч, устанавливают сочлененные фиксаторы, состоящие из основных и легких дополнительных стержней, связанных непосредственно с контактным проводом.

Опрокидывание фиксаторов скоростной контактной подвески (КС-200) предотвращается ненагруженной ветровой струной длиной 600 мм, соединяющей дополнительный стержень фиксатора с основным стержнем (Рис. 7).

Прямые фиксаторы используют при минусовых (к опоре) зигзагах контактного провода или при горизонтальном усилии, направленном от опоры в случае изменения направления контактного провода; обратные фиксаторы- при плюсовых(от опоры) зигзагах контактного провода или горизонтальном усилии к опоре (поддерживающему устройству).

Рисунок 6 - Типы фиксаторов: а - ФП-3; б - УФП; в - ФО-25; г - УФО; д - ФР; 1, 8, 9 - изоляторы; 2 - деталь сочленения; 3 - стержень основной; 4 и 11 - стойки прямого и обратного фиксаторов; 5 - фиксатор дополнительный; 6 - зажим фиксирующий; 7 и 10 - наклонные и страхующие струны; 12 - держатели струны и контактного провода; 13 - коуш стальной; 14 - стойка фиксатора УФО

Рисунок 7 - Фиксатор обратный с ветровой струной: а -- схема установки ветровой струны на обратном фиксаторе; б -- схема установки ветровой струны на прямом фиксаторе; в -- общий вид ветровой струны; 1 -- стержень основного обратного фиксатора; 2 -- ветровая струна; 3 -- зажим фиксирующий; 4 -- фиксатор дополнительный; 5 -- стойка; 6 -- стержень основного прямого фиксатора

Рисунок 8 - Прямой фиксатор ФП с ветровой струной

При больших усилиях (более 200Н) от изменения направления контактного провода на внешней стороне кривой монтируют гибкие фиксаторы. В Правилах устройства и технической эксплуатации контактной сети определены условия установки гибких фиксаторов.

В обозначениях фиксаторов буквы и цифры указывают на его конструкцию, напряжение в контактной сети, для которого он предназначен, и геометрические размеры: Ф - фиксатор, П - прямой, О - обратный, А - анкеруемой ветви, Т - троса анкеруемой ветви, Г - гибкий, С - воздушных стрелок, Р - ромбовидных подвесок, И - изолированных консолей, У - усиленный, цифра 3 - на напряжение 3кВ (для линий постоянного тока), 25 - на напряжение 25кВ (для линий переменного тока); римские цифры І, ІІ, ІІІ и т.д. - характеризуют длину основного стержня фиксатора.

Длины основных стержней фиксаторов выбирают в зависимости от габарита установки опор, направления зигзага контактного провода, длины дополнительного стержня. Длина дополнительного стержня принята 1200мм.

Фиксаторы для изолированных консолей отличаются от фиксаторов для неизолированных консолей тем, что на конце основного стержня, обращенном к консоли, вместо стержня с нарезкой для соединения с изолятором приварено ушко для соединения с консолью.

В тех местах, где пересекаются электрифицированные железнодорожные пути, в контактной сети образуется пересечение соответствующих контактных подвесок, которое называется воздушной стрелкой. Воздушные стрелки должны обеспечивать плавный, без ударов и искрений, переход полоза токоприемника с контактных проводов одного пути (съезда) на контактные провода другого, свободное взаимное перемещение подвесок, образующих воздушную стрелку, и минимальное взаимное вертикальное перемещение контактных проводов в зоне подхвата полозом токоприемника провода примыкающего пути.

Рисунок 9 - Схема воздушной стрелки контактной сети: 1 -- зона прохода нерабочей части полоза токоприемника под нерабочей частью контактного провода; 2-- основной электрический соединитель; 3-- нерабочая ветвь контактного провода; 4 -- область расположения фиксирующего устройства; 5-- зона подхвата полозом токоприемника контактных проводов; 6 -- контактный провод прямого пути; 7 -- контактный провод отклоненного пути; 8 -- дополнительный электрический соединитель; 9 -- место пересечения контактных проводов

Воздушные стрелки над обыкновенными и перекрестными стрелочными переводами и над глухими пересечениями путей должны быть фиксированными с обеспечением возможности взаимных продольных перемещений контактных проводов. На второстепенных путях допускается применять нефиксированные воздушные стрелки .

Для крепления контактных проводов к несущему тросу в цепных подвесках служат струны. Струны должны обеспечивать эластичность подвески, а в полукомпенсированной цепной подвеске также возможность свободных продольных перемещений контактного провода относительно несущего троса при изменениях температуры. Материал струн должен иметь необходимую механическую прочность, долговечность и стойкость к атмосферной коррозии. Связь между контактным проводом и несущим тросом не должна быть жесткой, поэтому струны изготавливают отдельными звеньями.

Звеньевые струны цепных подвесок изготавливают из сталемедной проволоки диаметром 4 мм (Рис. 10), отдельные звенья шарнирно связаны между собой. В зависимости от длины струна может быть выполнена из двух и более звеньев, при этом нижнее звено, связанное с контактным проводом, во избежание излома должно быть длиной не более 300 мм. для уменьшения износа струн в местах соединения звеньев устанавливают коуши. Звеньевые струны прикрепляют к контактному проводу и несущему тросу струновыми зажимами, двойные контактные провода полукомпенсированной подвески крепятся на общих струнах с отдельными нижними звеньями. При изменениях температуры происходит взаимное перемещение контактного провода и несущего троса (по обе стороны от средней анкеровки).

Взаимное перемещение проводов приводит к перекосу струн. В результате меняется как положение контактного провода по высоте, так и натяжение проводов цепной подвески. Чтобы уменьшить это влияние, угол наклона струны не должен превышать 30° к вертикали вдоль оси пути (Рис. 10, в).

Рисунок 10 - Струны цепных контактных подвесок: а - звеньевая струна; б и в - расположение струны на компенсированной и полукомпенсированной подвеске; г - допускаемый наклон струны к вертикали; 1 - несущий торос; 2 - контактный провод; 3 - полоз токоприемника; 4 - струновой зажим 046

Для более равномерной эластичности и уменьшения стрел провеса контактного провода при температурных изменениях у опорных конструкций его подвешивают на рессорных струнах (тросах) марки БМ - 6. Рессорные струны изготавливают из сталемедной проволоки диаметром 6 мм. Звеньевые струны крепят с одной стороны к рессорной струне (тросу) струновыми зажимами или медными скобами, а с другой к контактному проводу с обычным креплением струн зажимами.

Для обеспечения хода тока по всем проводам, входящим в контактную подвеску или по всем проводам, входящим в одну секцию, а также в случае разанкеровки проводов на опоре или в обход искусственного сооружения, применяются электрические соединители. Электрические соединители устанавливают на сопряжениях анкерных участков и отдельных секций на железнодорожных станциях, в местах соединения усиливающих проводов с контактной подвеской и несущих тросов с контактными проводами. Они должны обеспечивать надежный электрический контакт, эластичность контактной подвески и возможность продольных температурных перемещений проводов по всей длине.

Поперечные соединители (Рис. 11) устанавливают между всеми проводами контактной сети, относящимися к одному пути или группе путей (секции) на станции (контактными, усиливающими проводами и несущими тросами). Такое соединение обеспечивает протекание тока по всем параллельно расположенным проводам.

Продольные соединители (Рис. 12) устанавливают в местах сопряжения анкерных участков, местах подключения усиливающих и питающих проводов к контактной подвеске. Суммарная площадь сечения продольных соединителей должна быть равна площади сечения соединяемых ими подвесок, причем для надежного контакта продольные соединители на главных путях и других ответственных местах контактной сети выполняют из двух и более параллельно расположенных проводов.

Рисунок 11 - Схемы установки поперечных электрических соединителей (а, б) и подключения усиливающих проводов (в) и шлейфов разъединителя (разрядника, ОПН) к контактной подвеске (г); 1 и 5- соединительные и питающие зажимы; 2- несущий трос; 3- электрический соединитель (провод МГГ); 4 и 7- контактный и усиливающий провода; 6- «С- образный» электрический соединитель (провод М, А и АС); 8- шлейф от разъединителя (разрядника, ОПН); 9-зажим переходной

Рисунок 12 - Продольный электрический соединитель: 1 - электрический соединитель (провод МГ); 2 - соединительный зажим; 3 - несущий трос; 4 - контактный провод; 5 - питающий зажим

Продольные электрические соединители должны иметь площадь сечения, соответствующую сечению соединяемых ими подвесок. Продольные электрические соединители к питающим и усиливающим проводам у анкеровок следует подсоединять к выходящим из заделки свободным концам, а на неизолирующих сопряжениях и обводы - к каждому несущему тросу двумя соединительными зажимами и к контактному проводу одним питающим зажимом. При компенсированной подвеске длина электрического соединителя должна быть не менее 2 м.

Все виды электрических соединителей и шлейфы выполнены из медных проводов М сечением 70- 95 мм2 на участках переменного тока, допускается применение медных проводов МГ того же сечения.

Поперечные электрические соединители между несущими тросами и контактными проводами на перегонах установлены за пределами рессорных или первых вертикальных струн на расстоянии 0,2 - 0,5 м от их мест крепления.

Для питания контактной сети от тяговых подстанций существует несколько схем тягового электроснабжения. Наибольшее распространение получили система постоянного тока напряжением 3,3 кВ и системы переменного тока напряжением 25 кВ и 2х25 кВ.

При системе электроснабжения постоянного тока в контактную сеть электрическая энергия поступает от шин положительной полярности напряжением 3,3 кВ тяговых подстанций и возвращается после прохождения через тяговые двигатели электроподвижного состава по рельсовым цепям, присоединенным к шинам отрицательной полярности. Расстояние между тяговыми подстанциями постоянного тока в зависимости от грузонапряженности колеблется от 7 км до 30 км.

В системе электроснабжения переменного тока электроэнергия в контактную сеть поступает от двух фаз А и В напряжением 27,5 кВ (на шинах тяговых подстанций) и возвращается по рельсовой цепи к третьей фазе С. При этом питание осуществляют одной фазой встречно на фидерную зону (параллельная работа смежных тяговых подстанций) с чередованием питания для последующих фидерных зон с целью выравнивания нагрузок отдельных фаз энергоснабжающей системы. При этой системе электроснабжения вследствие высокого напряжения тяговые подстанции располагают через 40-60 км.

В последние годы на сети железных дорог России наряду с решением разных проблем и поставленных задач уделяется особое внимание проблеме пропускной способности перегонов и станций. Эта проблема возникает в условиях жесткой конкуренции между железными дорогами и другими отраслями транспортной промышленности РФ (морскими, автомобильными и т.д.). Успех в этом во многом зависит от быстрой, качественной и безопасной доставки грузов и пассажиров, что в значительной мере осложняется постоянно растущим грузооборотом и пассажиропотоком. Одним из наиболее предподчительных вариантов решения данной проблемы является повышение веса грузовых поездов.

Согласно инструкции по организации движения грузовых поездов повышенной длины и веса тяжеловесными поездами считаются поезда, вес которых более 6000 т или длина более 350 осей.

Обращение поездов повышенного веса и длины допускается на одно-двухпутных участках в любое время суток при температуре не ниже -30 С, а поездов из порожних вагонов - не ниже - 40 С [Л5].

Соединенные поезда организуются на станциях или перегонах из двух, а в необходимых случаях из трёх поездов, каждый из которых должен быть сформирован по длине приемоотправочных путей, но не более 0,9 их длины, установленным графиком движения, а так же с учетом ограничений по силе тяги и мощности локомотива и устройств энергоснабжения.

Соединение и разъединение поездов повышенного веса и длины разрешается на спусках и подъемах до 0,006 с соблюдением условий безопасности движения, предусмотренных местной инструкцией.

На электрифицированных участках порядок пропуска соединенных грузовых поездов устанавливается по условиям нагрева проводом контактной сети одного пути. Суммарный ток всех электровозов в поездах повышенного веса и длины не должен превышать допустимого тока по нагреву контактной сети, указанного в Правилах устройства и технической эксплуатации контактной сети электрифицированных железных дорог. При минусовых температурах допустимые токи проводов контактной подвески могут быть увеличены в 1,25 раза.

Число поездов повышенного веса и длины (для нормального электроснабжения) в зоне между тяговыми подстанциями должно быть не более заложенного в графике движения. При этом для расчета загруженности устройств электроснабжения поезд двойного унифицированного веса и длины считается за два поезда, тройного - за три и т.д.

Уменьшение интервала до заданного значения возможно чередованием пропуска поездов повышенного веса с более легкими поездами, введением ПС и ППС или увеличением допустимого тока контактной сети.

Введение дополнительных ПС и ППС на двухпутных участках с существенным (не менее чем в два раза) различающимися нагрузками по путям позволяет снизить примерно в 1,1 - 1,4 раза расчетный межпоездной интервал вследствие уменьшения токов в проводах контактной сети.

Минимальный межпоездной интервал проверяют по мощности устройств электроснабжения тяги, напряжению на токоприемнике электровоза, току уставки защиты питающих линий (фидеров) тяговых подстанций работе элементов тяговой рельсовой цепи.

Для организации обращения поездов повышенного веса и длины на дорогах разрабатываются мероприятия, в которых предусматривается увеличение площади сечения контактной подвески, улучшения токораспределения в проводах, повышения уровня напряжения в контактной сети и другие меры.

Одним из направлений транспортной политики является дальнейшее развитие скоростного движения поездов, которое ставит перед электрификаторами ряд новых технических задач. В международной практике к настоящему времени сложилась следующая классификация: скоростными считаются линии со скоростью движения 160--200 км/ч, высокоскоростными -- со скоростью свыше 200 км/ч.

Следует отметить, что изменения в конструктивных решениях, в выборе высокоэлектропроводных материалов и коррозионностойких покрытий, в применении новых изоляторов, усовершенствованных поддерживающих и опорных конструкций, в конструкции самой контактной подвески и пр., появившиеся в связи с внедрением подвески КС-200, показывают современные направления развития контактной сети и уже широко используются в проводимой на ряде дорог реконструкции для увеличения скоростей движения до 160 км/ч.

Трудовые и экономические затраты, необходимые для эксплуатации и капитального ремонта контактной сети на протяженном полигоне электрифицированных железных дорог, заставляет совершенствовать конструкции контактной сети, методы их монтажа и обслуживания.

Контактная сеть КС-200 должна обеспечивать надежный токосъем с числом проходов токоприемников до 1,5 млн, высокую эксплуатационную надежность, долговечность не менее 50 лет, а также значительное сокращение эксплуатационных расходов на ее обслуживание за счет более совершенных характеристик подвески: выравнивания эластичности в пролетах; снижения веса зажимов и фиксаторов, применения совместимых коррозийностойких материалов; антикоррозионных покрытий; высокой теплопроводности и малого электрического сопротивления используемых материалов.

Существует несколько вариантов переустройства контактной сети. Модернизацию проводят, если на участке постоянные элементы контактной сети выработали более 75% нормативного срока службы (ресурса) и понизили более чем на 25% несущую способность или допустимые нагрузки. В зависимости от объемов замены основных постоянных элементов осуществляют полную или частичную модернизацию контактной сети.

Полная модернизация предполагает полное обновление всех постоянных элементов контактной сети по типовым проектам контактной подвески. Замена контактных проводов производится в зависимости от степени их износа. Решение по сохранению опор, установленных при предшествующем капитальном ремонте и не выработавших свой ресурс, принимается при проектировании в зависимости от возможности их использования в подвеске и разбивки мест установке опор.

При частичной модернизации производится значительное обновление постоянных элементов и при необходимости полное обновление отдельных элементов - поддерживающих конструкций, компенсирующих устройств, изоляции, несущих тросов, арматуры.

1. Теоретические аспекты проектируемого участка

Техническое описание проектируемого участка.

Техническое описание представляет собой характеристику проектируемого участка, которую следует излагать в следующем порядке:

Род тока и система электроснабжения проектируемого участка;

Протяженность станции (расстояние между светофорами), пикетаж оси пассажирского здания;

Количество главных и второстепенных путей, расстояние в междупутьях, наличие тупиков и путей, не подлежащих электрификации;

Наличие подьездных путей к грузовым дворам и складским помещениям;

Протяженность прилегающего перегона и его характеристика (кривые, насыпи, выемки, искусственные сооружения)

Разработка и описание схемы питания и секционирования контактной сети станции и прилегающих перегонов.

На электрифицированных линиях ЭПС получает электроэнергию через контактную сеть от тяговых подстанций, расположенных на таком расстоянии между ними, чтобы было обеспечено стабильное номинальное напряжение на ЭПС и работала защита от токов короткого замыкания.

Для каждого участка электрифицированной линии при ее проектировании разрабатывают схему питания и секционирования контактной сети. При разработке схем питания и секционирования контактной сети электрифицированной линии используют типовые принципиальные схемы секционирования, разработанные на основе опыта эксплуатации, с учетом затрат на сооружение контактной сети.

Роль «человеческого фактора» в обеспечении безопасности движения поездов.

Анализ литературных источников показывает, что в деятельности железных дорог мира много общего, в том числе и проблем. Одна из них - безопасность движения поездов.

Каждая ошибка человека - это всегда результат его действия или бездействия, т.е. проявления его психики определение его аспекта. Причиной возникновения ошибки зачастую является не один, а целый комплекс негативно действующих факторов.

Работа железнодорожного транспорта неизбежно связана с риском, который определяется как мера вероятности опасности и степени тяжести ущерба (последствий) от нарушения безопасности. Транспортный риск-это результат проявления множества факторов как субъективного, так и объективного характера. Поэтому он будет существовать всегда. "Нельзя выиграть битву за безопасность раз и навсегда".

Аварию нельзя полностью исключить с помощью технических или организационных мероприятий. Они лишь снижают вероятность ее возникновения. Чем эффективней противодействие риску аварийных ситуаций, тем выше затраты сил и средств. Затраты на безопасность порой могут даже превышать убытки от аварий, крушений и брака в поездной и маневровой работе, что может привести к временному ухудшению экономических показателей отрасли. И все же такие затраты социально оправданны и их необходимо учитывать при экономических расчетах.

Безопасность движения поездов, безопасность железнодорожной транспортной системы представляет собой интегральное понятие, не поддающееся непосредственному измерению. Обычно под безопасностью понимается отсутствие (исключение) опасностей. При этом под опасностью подразумевается любое обстоятельство, которое способно причинить вред здоровью людей и окружающей среде, функционированию системы или нанести материальный ущерб.

Безопасность движения поездов - центральный сист емообразующий фактор, объединяющий различные составляющие железнодорожного транспорта в единую систему.

Железнодорожный транспорт - важнейшая составляющая экономической деятельности современного государства. Нарушения безопасности связаны с безвозвратными экономическими, экологическими и, прежде всего, с человеческими потерями.

Рассматривая железнодорожный транспорт как систему "человек - техника - среда", можно выделить четыре группы факторов, влияющих на эксплуатационную безопасность;

ТЕХНИКА (неисправность пути и подвижного состава, отказы средств СЦБ и связи, приборов безопасности, электроснабжения и ДР.);

ТЕХНОЛОГИЯ (нарушение и несоответствие законодательных норм, правил, предписаний, приказов, инструкций, плохие условия труда, противоречия между отраслевой и внешней инфраструктурой, недостатки эргономики, ошибки разработчиков технических средств, неправильные алгоритмы управления и др.);

СРЕДА (неблагоприятные объективные условия - рельеф местности, метеорологические условия, природные катаклизмы, повышенная радиация, электромагнитные помехи и др.).

ЧЕЛОВЕК, непосредственно управляющий техническими средствами и выполняющий обеспечивающие функции (неправильное выполнение своих производственных обязанностей умышленно или вследствие ухудшения состояния здоровья, недостаточной подготовленности, невозможности выполнять их на требуемом уровне).

Железнодорожный транспорт включает в себя тысячи разнообразных технических средств, которые в отдельности представляют опасность для окружающей среды и жизнедеятельности человека. В комплексе человеко-машинные системы несут гораздо большую опасность, которую нужно учитывать при их разработке, внедрении и эксплуатации. Все это указывает на необходимость создания теории безопасности - методологической основы мероприятий по обеспечению безопасности на железных дорогах.

Любое нарушение в технике и технологии в конечном итоге вызвано человеком, если не тем, кто управляет техническими средствами, так командиром или обслуживающим персоналом. Поэтому "...любое нарушение правильности функционирования во-первых, во-вторых и в-третьих исходит от человека" . На железных дорогах Российской Федерации за последние пять лет по вине человека произошло около 90 % всех аварий и крушений.

Человек совершает ошибки, и с этим необходимо считаться. Человек имеет право на ошибку (конечно, речь идет не об умышленных нарушениях). И чем больше отклонение состояния человека от его оптимального, тем больше вероятность ошибки. Поэтому необходимо построить систему безопасности таким образом, чтобы минимизировать последствия этих ошибок.

Для эффективного решения проблемы контроля состояния человека и построения автоматических устройств, частично дублирующих его действия, необходим современный подход, рассматривающий человека во взаимосвязи и взаимодействии со средой его обитания.

При этом "человеческий фактор" понимается достаточно широко. Это:

Действия руководителей, железнодорожных операторов, работников, непосредственно не связанных с движением поездов;

Различного рода регламентация, документооборот, разработка и выполнение приказов, инструкций, распоряжений, правил, законов и др.;

Отбор, подбор, расстановка и обучение кадров как руководящих, так и инженерно-технических, операторских и рабочих профессий (кадровый менеджмент);

Ошибки разработчиков технических средств и алгоритмов технологических процессов;

Исследование и учет влияния специфики железнодорожной среды на уровень здоровья человека (условия труда и отдыха);

Контроль и оценка текущего состояния работников (до смены, во время и после работы).

Обеспечение безопасности движения является на железнодорожном транспорте важнейшей задачей и включает три относительно самостоятельные функции: конструктивно-эксплуатационная надежность; высокоэффективное управление и надежность работы локомотивной бригады.

При этом, если процент возникновения различных происшествий технического и технологического плана играет относительно малую роль, то удельный вес причин брака «человеческого» происхождения, объединяемых понятием «личный фактор», весьма высок.

Значительным резервом здесь является изучение причин происшествий, связанных с человеком, и разработка на этой основе мер по их устранению.

Охрана труда.

Рабочим местом электромонтеров является электрифицированный участок в установленных для района контактной сети границах.

Выполнение работ на контактной сети требует твердых знаний правил безопасности и неукоснительного их выполнения.

Эти требования обусловлены повышенной опасностью: работы на контактной сети выполняются при наличии движения поездов, с подъемом на высоту, в различных метеорологических условиях, иногда в темное время суток, а также вблизи от проводов и конструкций, находящихся под высоким напряжением, или непосредственно на них без снятия напряжения, с соблюдением организационных и технических мероприятий по обеспечению безопасности работающих .

Условия выполнения работ.

При работе со снятием напряжения и заземлением полностью снимают напряжение и заземляют провода и оборудование, которых работают. Работы требуют повышенного внимания и высокой квалификации обслуживающего персонала, так как в зоне проведения работ могут оставаться под напряжением провода и конструкции. Приближение к проводам, находящимся под рабочим или наведенным напряжением, а также к нейтральным элементам на расстояние менее 0,8 м запрещен.

При работе под напряжением работник непосредственно соприкасается с частями контактной сети, находящимися под рабочим или наведенным напряжением. В этом случае безопасность работающего обеспечивается применением основных средств защиты: изолирующих съемных вышек, изолирующих рабочих площадок автомотрис и дрезин, изолирующих штанг, которые изолируют работающего от земли. В целях повышения безопасности выполнения работ под напряжением исполнитель во всех случаях завешивает шунтирующие штанги, необходимые для выравнивания потенциала между частями, к которым он одновременно прикасается, и на случай пробоя или перекрытия изолирующих элементов. При работах под напряжением обращают особое внимание на то. чтобы работающий одновременно не прикоснулся к заземленным конструкциям и находился от них на расстоянии не ближе 0,8 м.

Работы вблизи частей, находящихся под напряжением, выполняются на постоянно заземленных опорных и поддерживающих конструкциях, и между работающими и частями, находящимися под напряжением, может быть расстояние менее 2 м, но оно во всех случаях не должно быть менее 0,8 м.

Если расстояние до частей, находящихся под напряжением, более 2 м, то эти работы относят к категории выполняемых вдали от частей, находящихся под напряжением. При этом их подразделяют на работы с подъемом и без подъема на высоту. Работами на высоте считаются все работы, выполненные с подъемом от уровня земли до ног работающего на высоту 1 м и более.

Во время работ со снятием напряжения и заземлением и вблизи частей, находящихся под напряжением, запрещено:

Работать в согнутом положении, если расстояние от работающего при его выпрямлении до опасных элементов окажется менее 0,8 м:

Работать при наличии электроопасных элементов с двух сторон на расстоянии менее 2 м от работающего;

Выполнять работы на расстоянии ближе 20 м по оси пути от места секционирования (секционные изоляторы, изолирующие сопряжения и т.п.) и шлейфов разъединителей, которыми осуществляется отключение при подготовке места работы;

Пользоваться металлическими лестницами.

При работах под напряжением и вблизи частей, находящихся под напряжением, в бригаде должна быть заземляющая штанга на случай необходимости срочного снятия напряжения.

В темное время суток в зоне работ должно быть освещение, обеспечивающее видимость всех изоляторов и проводов на расстоянии не менее 50 м.

К опасным местам на контактной сети относят:

врезные и секционные изоляторы, отделяющие погрузочно-разгрузочные пути, пути осмотра крышевого оборудования и т.д.;

прогнивающие контактную подвеску и проходящие над ней на расстоянии менее 0,8 м шлейфы разъединителей и разрядников или ОПН другой секции контактной сети с другими потенциалами;

опоры, где расположены два и более разъединителей, разрядников или анкеровок различных секций;

места сближения консолей или фиксаторов различных секций на расстояние менее 0,8 м;

места прохода питающих, отсасывающих и других проводов по тросам гибких поперечин;

общие стойки фиксаторов различных секции контактной сети при расстоянии между фиксаторами менее 0,8 м;

опоры с анкерными отходами контактной подвески различных секций и заземленные анкерные отходы, расстояние от места работы на которых до токоведущих частей менее 0,8 м;

места расположения электрорепеллентной защиты;

опоры с роговым разрядником или ОПН, на которых смонтирована подвеска одного пути, а шлейф подключен к другому пути или фидерной трассы.

Опасные места на контактной сети обозначают специальными предупреждающими знаками указателями (красная стрела или. плакат «Внимание! Опасное место»). Работы по обеспечению безопасности в таких местах выполняются согласно «Карточки производства работ в опасном месте контактной сети».

Карточка производства работ в опасном месте на контактной сети.

Организационными мероприятиями по обеспечению безопасности работающих являются:

выдача наряда-допуска или распоряжения производителю работ;

инструктаж выдающим наряд ответственного руководителя, производителя работ;

выдача энергодиспетчером разрешения (приказ, согласование диспетчера) на подготовку места работы;

инструктаж производителем работ бригады и допуск к работе:

надзор во время работы;

оформление перерывов в работе, переходов на другое рабочее место, продление наряда и окончания работы.

Техническими мероприятиями по обеспечению безопасности работающих являются:

закрытие путей перегонов и станций для движения поездов, выдача предупреждений на поезда и ограждение места работ;

снятие рабочего напряжения и принятие мер против ошибочной подачи его на место работы;

*проверка отсутствия напряжения;

*наложение заземлений, шунтирующих штанг или перемычек, включение разъединителей;

*освещение места работы в темное время суток.

Контроль за соблюдением правил безопасности ведется в первую очередь в бригаде непосредственно на месте работ. Кроме того, периодически проверяется организация производства работ в районе контактной сети.

Работу бригады на линии регулярно проверяют руководители района контактной сети -- начальник или электромеханик. Периодические проверки осуществляют руководители и инженерно-технический персонал дистанции электроснабжения и службы электрификации и электроснабжения. При этом оценивается дисциплинированность бригады в деле обеспечения безопасности труда и грамотность проведения и организации работ.

Основа успешной работы без травм и нарушений нормальной работы -- поддержание постоянно устойчивой производственной и технологической дисциплины на всех уровнях, недопущение нарушений действующих правил и инструкций.

2. Расчетно-технологическая часть

Определение нагрузок, действующих на провода контактной сети.

Для контактной сети решающими являются нагрузки климатического характера: ветер, гололёд и температура воздуха, действующие в разных сочетаниях. Эти нагрузки имеют случайный характер: их расчётные значения за какой-либо период времени могут быть определены статистической обработкой данных наблюдений в районе электрифицированной линии.

Для установления расчётных климатических условий пользуются картами районирования территории России, для упрощённых расчётов данные к заданиям выдаются преподавателем.

Нагрузка от веса проводов является равномерно распределённой вертикальной нагрузкой, которую можно определить, пользуясь литературой.

Гололедная нагрузка вызывается гололёдом, представляющим собой слой плотного льда стекловидного строения с плотностью 900 кг/м3. Для расчётов принимаем, что гололёд выпадает цилиндрической формы с равномерной толщиной стенки льда, по воздействию нагрузка является вертикальной.

На интенсивность гололёдных образований большое влияние оказывают высота расположения провода над поверхностью земли. Поэтому при расчёте толщины стенки гололёда на проводах, расположенных на насыпях, значение толщины стенки гололёда следует также умножить на поправочный коэффициент кb.

Ветровые нагрузки на провода контактной сети зависят как от средней скорости ветра, так и от характера поверхности окружающей местности и высоты расположения проводов над землёй. В соответствии со строительными нормами и правилами «Нагрузки и воздействия. Нормы проектирования» расчётную скорость ветра для заданных условий (высоты расположения проводов над поверхностью и шероховатости поверхности окружающей местности) определяют умножением нормативной скорости ветра на коэффициент кv, зависящий от высоты расположения проводов над поверхностью земли и от её шероховатости, нормативного значения ветрового давления, Па, q0 , коэффициентом неравномерности давления ветра вдоль пролета, при механическом расчете, принимаемом.

Ветровая нагрузка на провода цепной контактной подвески является горизонтальной нагрузкой.

Из разного сочетания метеорологических условий, действующих на провода контактной сети, можно выделить три расчётных режима, при которых усилие (натяжение) в несущем тросе может оказаться наибольшим, т.е. опасным для прочности троса:

· режим минимальной температуры - сжатие троса;

· режим максимального ветра - растяжение троса;

· режим гололёда с ветром - растяжение троса.

Для этих расчётных режимов и определяют нагрузки, действующие на несущий трос. В режиме минимальной температуры несущий трос испытывает нагрузку только вертикальную - от собственного веса; ветер и гололёд отсутствует; в режиме максимального ветра на несущий трос действует вертикальная нагрузка от веса проводов контактной подвески и горизонтальная нагрузка от давления ветра на несущий трос, гололёд отсутствует. В режиме гололёда с ветром на несущий трос действуют вертикальные нагрузки от собственного веса проводов контактной подвески, от веса гололёда на проводах подвески и горизонтальная нагрузка от давления ветра на несущий трос, покрытый гололёдом при соответствующей скорости ветра.

Итак, расчёт нагрузок будем производить для трёх расчётных режимов, порядок расчётов приведён ниже.

Порядок расчётов.

В режиме минимальной температуры.

1. Выбор нагрузок от собственного веса несущего троса и контактного провода.

Линейные нагрузки от веса контактного провода к (Н/м) и вес несущего троса (Н/м) определяются в зависимости от марки провода по таблицам.

где, к - линейные нагрузки от собственного веса (1 м) несущего троса и контактного провода, H/м.

Нагрузка от собственного веса струн и зажимов, принимаемая равномерно распределенной по длине пролета; значение этой нагрузки может быть принято равным 1,0 H/м для каждого контактного провода;

Число контактных проводов.

где 0,009 H/мм3- плотность гололеда;

d - диаметр несущего троса;

Толщина стенки гололеда на несущем тросе, мм

где кb - поправочный коэффициент, учитывающий влияние местных условий расположения подвески на отложение гололеда (приложение 5, т. 5.7);

0,8 - поправочный коэффициент к весу отложения гололеда на несущем тросе.

Нормативную толщину стенки гололеда bн, мм, на высоте 10 метров с повторяемостью 1 раз в 10 лет в зависимости от заданного гололедного района находят по приложению 5 (т.5.6)

Расчётную толщину стенки гололёда с учётом поправочных коэффициентов допускается округлять до ближайшей целой цифры.

На контактных проводах расчётную толщину стенки гололёда устанавливают равной 50% толщины стенки, принятой для прочих проводов контактной сети, так как здесь учитывается уменьшение гололедообразования за счёт движения электропоездов и плавки гололёда (если таковая имеется).

где толщина стенки гололеда на контактном проводе, мм. На контактных проводах толщину стенки гололеда принимают равной 50% от толщины стенки гололеда на несущем тросе.

где - толщина стенки гололеда на несущем тросе, мм.

5. Полная вертикальная нагрузка от веса гололеда на проводах контактной подвески.

где - число контактных проводов;

Равномерно распределенная по длине пролета вертикальная нагрузка от веса гололеда на струнах и зажимах при одном контактном проводе (Н/м), которая в зависимости от толщины стенки гололеда может быть приближенно принята по приложению 5 (т.5.6).

6. Нормативное значение горизонтальной ветровой нагрузки на несущий трос в H/м определяется по формуле:

...

Подобные документы

    Определение нормативных нагрузок на провода контактной сети. Расчет натяжения проводов и допустимых длин пролетов. Разработка схем питания и секционирования станции. Составление плана контактной сети. Выбор способа прохода контактной цепной подвески.

    курсовая работа , добавлен 01.08.2012

    Расчет основных параметров участка контактной сети переменного тока, нагрузок на провода цепной подвески. Определение длины пролетов для всех характерных мест расчетным методом и с использованием компьютера, составление схемы питания и секционирования.

    курсовая работа , добавлен 09.04.2015

    Механический расчет цепной контактной подвески. Определение длин пролетов на прямом и кривом участках пути. Составление схемы питания и секционирования контактной сети. Проход контактной подвески в искусственных сооружениях. Расчет стоимости оборудования.

    курсовая работа , добавлен 21.02.2016

    Натяжение несущих тросов цепных контактных подвесок. Погонные (распределительные) нагрузки на провода контактной подвески для железнодорожного транспорта. Простые и цепные воздушные подвески. Особенности рельсовой сети как второго провода тяговой.

    курсовая работа , добавлен 30.03.2012

    Определение максимально допустимой длины пролета цепной контактной подвески на прямом участке пути и в кривой. Изгибающие моменты, действующие на промежуточные консольные опоры, подбор типов опор. Требования, предъявляемые к контактным проводам.

    контрольная работа , добавлен 30.09.2013

    Требования к схемам питания и секционирования контактной сети, условные графически обозначения ее устройств. Принципиальные схемы питания однопутного и двухпутного участка контактной сети и их экономическая эффективность. Устройства секционирования.

    контрольная работа , добавлен 09.10.2010

    Расчет размеров движения, расхода электроэнергии, мощности тяговых подстанций. Тип и количество тяговых агрегатов, сечение проводов контактной сети и тип контактной подвески. Проверка сечения контактной подвески по нагреванию. Токи короткого замыкания.

    курсовая работа , добавлен 22.05.2012

    Устройство электрификации железной дороги, разработка контактной сети: климатические, инженерно-геологические условия, тип контактной подвески; расчеты нагрузок на провода и конструкции, длин пролетов, выбор рационального варианта технического решения.

    курсовая работа , добавлен 02.02.2011

    Проект участка контактной сети. Расчет нагрузок на провода. Определение допустимых длин пролетов. Механический расчет анкерного участка полукомпенсированной контактной подвески станции. Подбор стоек опор контактной сети. Оценка риска отказа участка.

    дипломная работа , добавлен 08.06.2017

    Разработка и обоснование схемы питания и секционирования контактной сети станции и прилегающих перегонов. Расчет нагрузок, действующих на подвеску. Определение длин пролетов на прямом и кривом участках пути. Текущий ремонт консолей и их классификация.

Рисунок 1.6.1 – Расчетная схема для подбора опор

Вертикальная нагрузка от веса контактной подвески для расчетного режима определяется по формуле:

(1.6.1)

-м режиме, Н/м;

L – расчетная длина пролета, равная полусумме длин пролетов, смежных с расчетной опорой, м;

G и – нагрузка от веса изоляторов, принимаемая при расчетах на постоянном токе –150 Н;

G ф" – нагрузка от веса половины фиксаторного узла, G ф = 200 Н.

Аналогично определяется вертикальная нагрузка от веса усиливающего провода для расчетного режима – j.

(1.6.2)

При 3‒фазных ВЛ или ДПР нагрузки от проводов целесообразно суммировать и выбирать центры их тяжести. Подобные действия проводятся и с кронштейнами.

Вертикальные нагрузки от веса консоли кронштейна (G кн, G кр) принимаются по их типовым чертежам с увеличением этой нагрузки при гололедном режиме.

Горизонтальная нагрузка на опору под действием ветра на провода контактной сети определяется из выражения

(1.6.3)

где -й провод контактной сети при
i- м режиме, Н/м;

i – провод контактной сети (вместо i указывается «н» – для несущего троса, «к» для контактного провода, «пр» для усиливающего провода).

Усилие на опору от изменения направления провода на кривой определяется по формуле:

(1.6.4)

где Hij – натяжение i -го провода в j -м режиме, Н;

R – радиус кривой, м.

Нагрузка на опору от изменения направления проводов при отводе его на анкеровку определяется из выражения:

(1.6.5)

где Z = Г + 0,5D – расстояние от оси пути до места крепления анкеровки провода, равное сумме габарита (Г) и половине диаметра (D ) опоры.

Усилие от изменения направления контактных проводов при зигзагах на прямых участках пути, если они имеют на соседних опорах равные по величине и противоположные по направлению значения, определяют по формуле

(1.6.6)

где а – величина зигзага на прямом участке пути, м.

Нагрузка от давления ветра на опору определяется из выражения:

где Сx – аэродинамический коэффициент, для ж/б опор, Сx = 0,7;

V p– расчетная скорость ветра, м/с;

S оп – площадь поверхности, на которую действует ветер (площадь диаметрального сечения опоры):

(1.6.7)

где d, D – диаметры опоры, соответственно верхний и нижний, м;

h оп – высота опоры, м.

Произведем расчет нагрузок на промежуточную опору на прямом участке перегона для самого тяжелого режима (гололеда с ветром):

Горизонтальная нагрузка на опору под действием ветра на провода КС:

Площадь поверхности, на которую действует ветер:

Таблица 6.1.1 – Результаты расчета опор, Н∙м

По этому моменту выбираем опору при условии, что он должен быть меньше нормативного момента. Выбираем опору СС 136,6–1 с нормативным моментом = 44000 Н∙м.

Выбор оборудования

При реконструкции участка контактной сети были применены опоры типа СC136,6–1. Опоры типа СC136,6–1 были установлены в фундаменты ТСC 4,5–4 трехлучевые фундаменты со скосом предназначены для анкерной установки раздельных железобетонных и металлических опор контактной сети.

Для анкеровки проводов применялись анкера типа ТАС – 5,0. Дополнительно применялись опорные плиты ОПФ фундаментные и ОП-1 типа 1.

Контактная подвеска крепилась на консоли изолированные трубчатые типа КИС–1 и фиксаторы прямые и обратные (ФИП и ФИО), кронштейны проводов МГ–III.

Все оборудование выбиралось согласно типовых проектов КС 160-4.1; 6291, КС-160.12, разработанными ЗАО «Универсал-контактные сети».

Примечание: Маркировка фундамента ТСС 4,5–4 расшифровывается следующим образом: Т – трехлучевой, С – стаканного типа, С –со скосом, 4,5 – размер в метрах, 4 – группа несущей способности, 79 кНм.

Маркировка анкера ТАС – 5,0 расшифровывается: Т – трёхлучевой, А- анкер, С – со скосом, 5,0 – длина в метрах. Маркировка консоли КИС: К – консоль, И – изолированная, С – стальная. Маркировка фиксаторов ФИП: Ф – фиксатор сочлененный, П – прямой, О – обратный, 1 – обозначение типоразмера стержня фиксатора.

План контактной сети приведен в Приложении А.

Федеральное агентство железнодорожного транспорта.

Иркутский государственный университет путей сообщения.

Кафедра: ЭЖТ

КУРСОВОЙ ПРОЕКТ

Вариант-83

Дисциплина: «Контактные сети»

«Расчет участка контактной сети станции и перегона»

Выполнил: студент Добрынин А.И

Проверил: Ступицкий В.П.

г. Иркутск


Исходные данные.

1. Характеристика цепной подвески

На главных путях перегона и станции цепная подвеска полукомпенсированная.

При двух контактных проводах расстояние между ними принимается равным 40 мм.

Тип контактной подвески: М120 + 2 МФ – 100;

Род тока: постоянный;

2. Метеорологические условия

Климатическая зона: IIб;

Ветровой район: I;

Гололёдный район: II;

Гололёд имеет цилиндрическую форму с плотностью 900 кг/м 3 ;

Температура гололёдных образований t = -5 0 С;

Температура, при которой наблюдается ветер максимальной интенсивности t = +5 0 C;

3. Станция

На станции электрифицируются все пути, кроме подъездного к тяговой подстанции. Стрелки, примыкающие к главному пути, имеют марку 1/11 (на одиннадцать метров длины пути приходится один метр бокового отклонения), остальные стрелки принимаются марки 1/9.

Цифрами на схеме указываются расстояния от оси пассажирского здания (в метрах) до остряков стрелок, входных светофоров, тупиков и пешеходных мостов, а также указываются расстояния между соседних путей.

4. Перегон

Перегон задан в виде пикетажа основных объектов: входных сигналов, кривых с соответствующими радиусами, мостов и других искусственных сооружений. Совместимость перегона со станцией проверяется по пикетажу общего входного сигнала.

Пикетаж основных объектов перегона

Входной сигнал заданной станции 23 км 8+42;

Начало кривой (центр слева) R = 600 м 2+17;

Конец кривой 5+38;

Ось каменной трубы с отверстием 1.1 м 5+94;

Начало кривой (центр справа) R = 850 м 7+37;

Конец кривой 25 км 4+64;

Мост через реку с ездой понизу:

ось моста 7+27;

длина моста, м 130;

Ось железобетонной трубы с отверстием 3.5 м 9+09;

Начало кривой (центр слева) R = 1000 м 26км 0+22;

Конец кривой 4+30;

Входной сигнал следующей станции 27 км 7+27;

Ось переезда шириной 6 м 7+94;

Первая стрелка следующей станции 9+55.

1. Высота моста через реку 6.5 м (расстояние от УГР до нижней части ветровых связей моста);

2. Справа по ходу километров предполагается укладка второго пути;

3. На расстоянии 300 м по обеим сторонам моста через реку путь располагается на насыпи высотой 7 м.

Введение

Совокупность устройств, начиная от генераторов электростанций и кончая тяговой сетью, составляет систему электроснабжения электрифицированных железных дорог. От этой системы питаются электрической энергией, помимо собственной электрической тяги (электровозы и электропоезда), а также все не тяговые железнодорожные потребители и потребители прилегающих территорий. По этому электрификация ЖД решает не только транспортную проблему, но и способствует решению важнейшей народнохозяйственной проблемы-электрификации всей страны.

Главное преимущество электрической тяги перед автономной (имеющие генераторы энергии на самом локомотиве) определяется централизованным электроснабжением и сводятся к следующему:

Производства электрической энергии на крупных электростанциях приводит, как всякое массовое производство, к уменьшению её стоимости, увеличению КПД и снижению расхода топлива.

На электростанциях могут использоваться любые виды топлива и, в частности, малокалорийные - нетранспортабельные (затраты на транспортировку которых не оправдывается). Электростанции могут сооружаться непосредственно у места добычи топлива, вследствие чего отпадает необходимость в его транспортировки.

Для электрической тяги может, использована гидроэнергия и энергия атомных электростанций.

При электрической тяги возможна рекуперация (возврат) энергии при электрическом торможении.

При централизованном электроснабжении потребная для электрической тяги мощность практически не ограничена. Это даёт возможность в отдельные периоды потреблять такие мощности, которые невозможно обеспечить на автономных локомотивах, что позволяет реализовать, например, значительно большие скорости движения на тяжелых подъемах при больших весах поездов.

Электрический локомотив (электровоз или электровагон) в отличие от автономных локомотивов не имеет собственных генераторов энергии. По этому он дешевле и надёжней автономного локомотива.

На электрическом локомотиве нет частей, работающих при высоких температурах и с возвратно-поступательным движением (как на паровозе, тепловозе, газотурбовозе), что определяет уменьшение расходов на ремонт локомотива.

Преимущества электрической тяги, создаваемые централизованным электроснабжением, для своей реализации требуют сооружения специальной системы электроснабжения, затраты на которую, как правило, значительно превышает затраты на электроподвижной состав. Надежность работы электрифицированных дорог зависит от надежности работы системы электроснабжения. По этому вопросы надежности и экономичности работы системы электроснабжения существенно влияют на надежность и экономичность всей электрической железной дороги в целом.

Для подачи электроэнергии на подвижной состав применяются устройства контактной сети.

Проект контактной сети, является одной из основных частей проекта электрификации ЖД участка, выполняется с соблюдением требований и рекомендаций ряда руководящих документов:

Инструкция по разработке проектов и смет для промышленного строительства;

Временная инструкция по разработке проектов и смет для железнодорожного строительства;

Норм технологического проектирования электрификации железных дорог и др.

Одновременно учитываются требования, приведенные в документах, регламентирующих эксплуатацию контактной сети: в правилах технической эксплуатации железных дорог, правилах содержания контактной сети электрифицированных железных дорог.

В данном курсовом проекте произведен расчет участка контактной сети однофазного постоянного тока. Составлены монтажные планы контактной сети станции и перегона.

К устройствам контактной сети относятся все провода контактных подвесок, поддерживающие и фиксирующие конструкции, опоры с деталями для крепления в грунте, к устройствам воздушных линий – провода различных линий (питающих, отсасывающих, для электроснабжения автоблокировки и прочих не тяговых потребителей и др.) и конструкции для их крепления на опорах.

Устройства контактной сети и воздушных линий, подвергаясь воздействиям различных климатических факторов (значительные перепады температур, сильные ветры, гололедные образования), должны успешно им противостоять, обеспечивая бесперебойное движение поездов с установленными весовыми нормами, скоростями и интервалами между поездами при требуемых размерах движения. Кроме того, в условиях эксплуатации возможны обрывы проводов, удары токоприемников и другие воздействия, которые также нужно учитывать в процессе проектирования.

Контактная сеть не имеет резерва, что обуславливает повышенные требования к качеству ее проектирования.

При проектировании контактной сети в разделе проекта электрификации железнодорожного участка устанавливают:

Расчетные условия – климатические и инженерно-геологические;

Тип контактной подвески (все расчеты по определению необходимой площади сечения проводов контактной сети выполняют в разделе электроснабжения проекта);

Длину пролетов между опорами контактной сети на всех участках трассы;

Типы опор, способы их закрепления в грунте и типы фундаментов для тех опор, которым они необходимы;

Виды поддерживающих и фиксирующих конструкций;

Схемы питания и секционирования;

Объемы работ по установке опор на перегонах и станциях;

Основные положения по организации строительства и эксплуатации.


Анализ исходных данных

При двойном контактном проводе компенсированную контактную подвеску применяют на участках со скоростью движения поездов 120 км/ч и более. На главных путях станции вследствие снижения скоростей, как правило, используют полукомпенсированную цепную подвеску. На основании данных метеорологических условий выбираем основные климатические параметры, повторяющиеся один раз в десять лет:

Диапазон температур из табл. 2.с3 : -30 0 С ¸ 45 0 С;

Максимальная скорость ветра из табл. 5.с14 : v нор = 29 м/с;

Толщина стенки гололеда из табл. 1.с12 : b =10 мм;

В зависимости от условий эксплуатации и характера электрифицируемого участка выбираются необходимые поправочные коэффициенты на порывистость ветра и интенсивность гололёда. Для общего случая принимаем их значения 0.95, 1.0 и 1.25 соответственно для станции, перегона и насыпи.

Определение нагрузок действующих на провода контактной сети

Для станции и перегона.

Расчет вертикальных нагрузок

Наиболее неблагоприятные условия работы отдельных конструкций контактной сети могут возникать при различных сочетаниях метеорологических факторов, которые могут складываться из четырех основных компонентов: минимальной температуры воздуха, максимальной интенсивности гололёдных образований, максимальной скорости ветра и максимальной температуры воздуха.

Нагрузку от собственного веса 1 м контактной подвески определим из выражения:


где - нагрузка от собственного веса несущего троса, Н/м;

То же но контактного провода, Н/м;

То же, но от струн и зажимов, принимается равным 1

Число контактных проводов.

В случае отсутствия данных в справочнике, нагрузку от собственного веса провода можно определить из выражения:

, Н/м (2)

где - площадь поперечного сечения провода, м 2 ;

Плотность материала провода, кг/м 3 ;

Коэффициент, учитывающий конструкцию провода (для цельного провода =1, для многопроволочного троса =1.025);

Для комбинированных проводов (АС, ПБСМ и т.д.) нагрузка от их собственного веса может быть определена из выражения:

где , - площадь поперечного сечения проволок из материалов 1 и 2, м 2 ;

Плотность материалов 1 и 2, кг/м 3 .

Для подвески М120 + 2 МФ – 100:


Согласно выражению (1) получим:

Нагрузка от веса гололёда, приходящаяся на один метр провода или троса при цилиндрической форме его отложения, определим по формуле:

где - плотность гололёда 900 кг/м 3 ;

Толщина стенки гололёдного слоя, м

Диаметр провода, м.

Учитывая, что произведение 9.81×900×3.14 = 27.7×10 3 , можно записать:

Расчётное значение толщины гололёдного слоя определим как , где - толщина гололедного слоя в соответствии с гололёдным районом b = 10 мм; К Г - коэффициент, учитывающий действительный диаметр провода и высоту его подвешивания . Для станции и перегона К Г =0.95.

Согласно выражению (5) определим вес гололёда на 1 м несущего троса


Толщина стенки гололёда на контактном проводе, учитывая её удаление эксплуатационным персоналом и токоприёмниками, уменьшается на 50 % по сравнению с несущим тросом. Расчётный диаметр контактного провода берется усредненный из высоты и ширины его сечения:

где Н – высота сечения провода, м; А – ширина сечения провода, м;

Используя выражение (6) получим:

мм.


Используя выражение (5) определим вес гололёда на 1 м контактного провода

Вес гололёда на струнах не учитывается. Тогда суммарный вес 1 м цепной подвески с гололёдом определим по формуле:

где g – вес контактной подвески Н/м;

g ГН – вес гололёда на 1 м несущего троса, Н/м;

g ГК – вес гололёда на 1 м контактного провода, Н/м.

Согласно выражению (7) суммарный вес 1 м цепной подвески с гололёдом:

Определяем горизонтальные нагрузки.

Ветровую нагрузку на провод в режиме максимального ветра определим по формуле:

(8)

где -плотность воздуха при температуре t = +15 0 С и атмосферном давлении 760 мм рт.ст. Она принимается равной 1.23 кг/м 3 ;

v Р - расчётная скорость ветра, м/с; v Р = 29 м/с.

С Х – аэродинамический коэффициент лобового сопротивления, зависящий от формы и положения поверхности объекта, для станции и перегона С Х =1.20 для одного провода С Х =1.25;

К В – коэффициент, учитывающий действительный диаметр провода и высоту его подвешивания. Для станции и перегона К В =0.95.

d i - диаметр провода (для контактных проводов – вертикальный размер сечения), мм.


Ветровая нагрузка на провод при наличии гололеда на проводе определим по формуле:

где - расчетная скорость ветра при гололеде (по табл.1.4), м/с;

Для определения на контактном проводе значение принимается равным b/2.



Определяем результирующие нагрузки на н/т для двух режимов.

Результирующие нагрузки на отдельный провод при отсутствии гололеда:


При наличии гололеда:



Расчет длин пролетов

Расчет натяжения проводов

Максимальное допустимое натяжение несущего троса определяется по формуле


где - коэффициент, учитывающий разброс механических характеристик отдельных проволок,0,95;

Временное сопротивление разрыву материала проволоки , Па;

Коэффициент запаса ;

S - раcчетная площадь поперечного сечения, м2.

Максимальное допустимое и номинальное натяжение для проводов в табл.10 .

Определение максимальных допустимых длин пролетов


где К - натяжение контактного провода, Н;

Эквивалентная нагрузка на контактный провод от несущего троса, Н/м.

где - допустимое отклонение контактного провода от оси пути. На прямом участке 0,5 м, на кривом 0,45 м;

Зигзаги контактного повода на смежных опорах. На прямом участке пути +/-0,3 м. На кривом +/-0,4 м.

Прогиб опоры под действием ветра на уровне несущего троса и контактного провода. Эти величины (в зависимости от скорости ветра) приведены на стр.48.

Зигзаг контактного провода, одинаковый по величине на соседних опорах.

Примем зигзаги на соседних опорах на прямом участке направленными в одну сторону, а на кривом в разные.


где - натяжение несущего троса в режиме ветра максимальной интенсивности, Н;

Длина пролета, м;

Высота гирлянды изоляторов. В проекте принимаем 4 ПС-70Е. Высота одной чашки 0,127 м.

Средняя длина струны в середине пролета при конструктивной высоте h0, м.


Расчет для прямого участка пути на станции (боковые пути):

Полученная длина отличается от предыдущего расчета менее чем на 5 м, следовательно можно считать её окончательно принятой.


Полученная длина отличается от предыдущего расчета менее чем на 5 м, следовательно можно считать её окончательно принятой.

Полученная длина отличается от предыдущего расчета менее чем на 5 м, следовательно можно считать её окончательно принятой.

На кривом участке пути максимальная допустимая длина пролета определяется из выражения:

Расчет максимально допустимой длины пролета выполняется:

Для прямого участка: станция (главный и боковой пути) и перегон (равнина и насыпь);

Для кривого участка: на перегоне для равнины и насыпи при заданных радиусах кривизны.


Полученная длина отличается от предыдущего расчета менее чем на 5 м, следовательно можно считать её окончательно принятой.


Полученная длина отличается от предыдущего расчета менее чем на 5 м, следовательно можно считать её окончательно принятой.

Полученная длина отличается от предыдущего расчета менее чем на 5 м, следовательно можно считать её окончательно принятой.


Полученная длина отличается от предыдущего расчета менее чем на 5 м, следовательно можно считать её окончательно принятой.


Полученная длина отличается от предыдущего расчета менее чем на 5 м, следовательно можно считать её окончательно принятой.


Полученная длина отличается от предыдущего расчета менее чем на 5 м, следовательно можно считать её окончательно принятой.

Все расчеты сводим в таблицу

Место расчета Длина пролета без Р э Длина пролета с Р э Окончательная длина пролета
1. прямая станции и перегона 51.2 49.6 50
2. прямая перегона на насыпи 45.2 43.8 45
3. кривая R 1 =600м 37.8 37.3 37
4. кривая R 2 =850м 42.3 41.8 42
5. кривая R 3 =1000м 44.4 43.8 44
6. кривая R 6 =850м на насыпи 42.0 41.4 42
7. кривая R 5 =1000 м на насыпи 44.07 43.4 44
7. кривая R4=600 м на насыпи 37.5 37.1 37

Порядок составления плана станции и перегона

Порядок составления плана станции.

Подготовка плана станции. План станции вычерчиваем в масштабе 1:1000 на листе миллиметровой бумаге. Необходимую длину листа определяем в соответствии с заданной схемой станции, на которой указаны расстояния всех центров стрелочных переводов, светофоров, тупиков от оси пассажирского здания в метрах. При этом условно принимаем эти отметки в левую сторону с знаком минус, а в правую со знаком плюс.

Вычерчивание плана станции начинаем с разметки тонкими вертикальными линиями, через каждые 100 метров условных станционных пикетов в обе стороны от оси пассажирского здания, принимаемый за нулевой пикет. Пути на плане станции представляем их осями. На стрелках оси путей пересекаются в точке называемой центром стрелочного перевода. Пользуясь данными на заданной схеме станции, наносим параллельными линиями оси путей, при этом расстояния между ними должны соответствовать в принятом масштабе заданным междупутьям.

На плане станции также показываем не электрифицированные пути. Указав на специальных выносах пикетные отметки центров стрелочных переводов, вычерчиваем стрелочные улицы и съезды. Далее на план станции наносим здания, пешеходный мост, пассажирские платформы, тяговую подстанцию, входные светофоры, переезды.

Наметка мест, где необходимо фиксация контактных проводов.

Разбивку опор на станции начинаем с наметки мест, где необходимо предусматривать устройства для фиксации контактных проводов. Такими местами являются все стрелочные переводы, над которыми должны быть смонтированы воздушные стрелки и все места, где провод должен изменить свое направление.

На одиночных воздушных стрелках наилучшее расположение контактных проводов, образующих стрелку, получается, если фиксирующее устройство установлено на определенном расстоянии С от центра стрелочного перевода. Смещение фиксирующих опор допускается к центру стрелочного перевода на 1 – 2 метра и от центра стрелочного перевода на 3 - 4 метра. В вершине кривой фиксирующую опору намечаем по пикету этой вершины, при этом зигзаг у этой опоры всегда выполняется отрицательным.

Расстановка опор в горловинах станции

Разбивку опор на станции начинаем с горловины, где сосредоточены наибольшее количество мест фиксации контактных проводов. Из намеченных мест фиксации производим выбор тех мест, где рационально установить несущие опоры. При этом действительные длины пролетов не должны превышать расчетных длин и разница в длинах смежных пролетов должна быть не более 25% длины большего из них. Кроме того опоры на двухпутных участках следует располагать в одном пикете. Если установка только несущих опор приводит к значительному сокращению пикетов, то следует рассмотреть возможность выполнения части воздушных стрелок не фиксированными.

Нефиксированные воздушные стрелки могут быть выполнены только на боковых путях, на опорах, расположенных в близи (до 20 м.) от стрелочного перевода.

Выбрав размеры пролетов между опорами фиксирующими воздушные стрелки главных путей, приступаем к наметке несущих опор на следующих стрелках станции, учитывая требования к длинам пролетов перечисленные выше. У фиксирующих опор расставляем зигзаги.

Расстановка опор в средней части станции.

При наличии в пределах станции искусственных сооружении выбираем способ прохода контактной подвески через эти сооружения. В соответствии с принятым способом намечаем места установки опор у пассажирского здания. После этого на оставшихся частях станции, по возможности применяя максимальные допустимые пролеты, намечаем места для опор жестких поперечин.

Порядок прохода подвески под искусственными сооружениями на станции.

Искусственные сооружения встречаются на перегонах и станциях электрифицируемой линии, часто не позволяют пропускать цепную подвеску нормального типа с обычными габаритами.

Способ прохода контактного провода под искусственными сооружениями выбирают в зависимости от напряжения в контактной сети, высота искусственного сооружения над уровнем верха головки рельса (УГР), длины его вдоль электрифицированных путей, установленной скорости движения поездов.

Размещение контактного провода под искусственными сооружениями при ограниченных габаритах связано с решением двух основных задач:

1.Обеспечение необходимых воздушных зазоров между контактными проводами и заземленными частями искусственных сооружений;

2. Выбор материала, конструкции и способа закрепления поддерживающих устройств.

Сечение контактного провода в пределах искусственного сооружения должно быть равно сечению контактного провода на прилегающих участках, для чего в необходимых случаях монтируются обводы, восполняющие сечение НТ и усиливающих проводов.

Уклоны контактного провода на подходах к искусственному сооружению устанавливают по условиям взаимодействия токоприемника и контактного провода в зависимости от максимальной скорости движения и параметров контактной подвески и токоприемника.

Минимальная величина пространства по вертикали, необходимая для размещения токонесущих элементов контактной сети при проходе подвески в стеснённых условиях существующих искусственных сооружений, составляет 100мм. при подвески без НТ и 250мм. с НТ.

В тех случаях, когда при нормальном напряжении в контактной сети, нельзя по условиям необходимых габаритных расстояний для этого напряжения контактную подвеску разместить без реконструкции искусственного сооружения, в пределах искусственного сооружения монтируют не изолированную контактную подвеску с устройством с обеих сторон нейтральных вставок. Поезда в этом случае проводят через искусственное сооружение с выключенным током, по инерции.

Во всех случаях, когда расстояние от проводов контактной подвески до расположенных над ним заземленных частей искусственных сооружений при наиболее не благоприятных условиях менее 500мм. при постоянном токе и 650мм. при переменном токе или имеется какая - либо возможность поджатия проводов контактной подвески к частям искусственного сооружения.


нейтральный элемент

650 и менее

отбойник

изоляторы

Разбивка анкерных участков

После расстановке опор по всей длине станции производим разбивку анкерных участков и окончательно выбираем места установки анкерных опор.

При разбивке анкерных участков необходимо выполнять следующие требования и условия:

Число анкерных участков должно быть минимально возможным. При этом длина анкерного участка не должна превышать 1600 метров;

В отдельные анкерные участки выделяем боковые пути и съезды между главными путями;

Для анкеровки желательно использовать ранее намеченные промежуточные опоры;

При анкеровки провод не должен менять свое направление на угол более 7 0 ;

Если длина бокового пути более 1600 метров его следует разбить на два анкерных участка, а в середине выполнить не изолирующее сопряжение.

Длину нескольких пролетов расположенных примерно в середине анкерного участка снижаем на 10% относительно максимальной в данном месте, чтобы разместить среднюю анкеровку.

Расстановка опор по концам станции. Согласно установленной схеме секционирования контактной сети в местах примыкания перегонов к станциям выполняем продольное секционирование. Изолирующее четырех пролетное сопряжение монтируется между входным сигналом и ближайшим к перегону стрелочным переводом станции, по возможности на прямых участках пути. При этом каждый переходной пролет сокращаем на 25% от расчетного; переходные опоры по первому и второму пути смещаем относительно друг друга на 5 метров.

Приближение переходной опоры к входному светофору допускается на расстояние не менее 5 метров.

После расстановки опор под изолирующее сопряжение разбиваем пролет между крайней стрелкой и сопряжением затем расставляем зигзаги, направление которых должно быть согласованным.

При наличии на станции переезда опоры располагаем так, чтобы расстояние от края проезжей части переезда по ходу поезда до опор было не менее 25 метров.

Для выполнения поперечного секционирования со схемы питания и секционирования станции переносим все секционные изоляторы и выполняем их нумерацию, а на поперечных тросах жестких поперечин показываем врезные изоляторы между секциями, которые изолированы друг от друга.

В качестве основного типа несущих конструкций контактной сети на станциях должны приниматься жесткие поперечины, перекрывающих от двух до восьми путей. Если более восьми путей допускается применение гибких поперечин.

Питание и секционирование контактной сети

Описание схемы питания и секционирования. На электрифицированных железных дорогах электроподвижной состав получает электроэнергию через контактную сеть от тяговых подстанций, расположенных на таком расстоянии друг от друга, чтобы обеспечивать надежную защиту от токов короткого замыкания.

В системе постоянного тока электроэнергия в контактную сеть поступает поочередно от двух фаз напряжением 3,3 кВ и возвращается также по рельсовой цепи к третей фазе. Чередование питания производят для выравнивания нагрузок отдельных фаз энергоснабжающей системы.

Как правило, применяют схему двухстороннего питания, при которой каждый находящийся на линии локомотив получает энергию от двух тяговых подстанций. Исключение составляют участки контактной сети, расположенные в конце электрифицированной линии, где может быть применена схема консольного (одностороннего) питания от крайней тяговой подстанции и постов секционирования устраиваются вдоль электрифицированной линии изолирующее сопряжения и каждая секция получает электроэнергию от разных питающих линий (продольное секционирование).

При продольном секционировании, кроме разделения контактной сети у каждой тяговой подстанции и поста секционирования, выделяют в отдельные секции контактную сеть каждого перегона и станции с помощью изолирующих сопряжений. Секции между собой соединяются секционными разъединителями, каждая из секций может быть отключена этими разъединителями. Через фидер контактной сети Фл1 питается перегон с западной стороны станции, находящейся за изолирующим сопряжением, которое разделяет главные пути станции от перегона воздушным промежутком.

На фидерах установлены секционные разъединители с моторными приводами ТУ и ДУ, нормально замкнутые.

Через фидер Фл2 питается восточный перегон станции. На фидерах установлены секционные разъединители с моторными приводами ТУ и ДУ, нормально замкнутые.

Главные пути станции питаются через фидер Фл31. Снабженный секционным разъединителем с моторным приводом ТУ и ДУ, нормально замкнутый.

Разъединители А,В соединяют станционные пути и перегон, с моторными приводами на ТУ, нормально включены. При поперечном секционировании на станциях контактную сеть группы путей выделяют в отдельные секции и питают их от главных путей через секционные разъединители, которые при необходимости могут быть отключены. Секции контактной сети на соответствующих съездах между главными и боковыми путями изолируют секционными изоляторами. Этим достигается независимое питание каждого пути и каждой секции в отдельности, что облегчает устройство защиты и дает возможность при повреждении или отключении одной из секций осуществлять движение поездов по другим секциям.

Трассировка питающих и отсасывающих линий

Трассы питающих и отсасывающих линий от тяговой подстанции к электрифицируемым путям проектируем по кротчайшему расстоянию. Для анкеровки линий у здания тяговой подстанции и путей используем железобетонные опоры.

Воздушные питающие и отсасывающие линии, идущие вдоль станции подвешиваем с полевой стороны опор контактной сети. Для перевода питающих линий через пути используем жесткие поперечины, на которых смонтированы Т - образные конструкции.

Трассировка контактной сети на перегоне

Подготовка плана перегона. План перегона выполняем на листе миллиметровой бумаги в масштабе 1:2000 (ширина листа 297 мм). Необходимую длину листа определяем исходя из заданной длины перегона с учетом масштаба необходимого запаса (800 мм) в правой части чертежа на размещение общих данных в основной надписи и принимаем кратной стандартному размеру 210 мм.

В зависимости от числа путей на перегоне на плане вычерчиваем одну или две прямые линии (на расстоянии 1 см друг от друга), представляющие оси путей.

Пикеты на перегоне размечают вертикальными линиями через каждые 5 см (100 м) и нумеруют их в направлении счета километров, начиная с пикета входного сигнала, указанного в задании.

Если при трассировке контактной сети станции в правой горловине оказалось четырех пролетное изолирующее сопряжение контактных подвесок станции и перегона, расположенное до входного сигнала, то для его повторения на плане перегона нумерацию пикетов нужно начать за 2-3 пикета до заданного пикета входного сигнала. Выше и ниже прямых линий, представляющих оси путей, вдоль всего перегона размещаем данные в виде таблиц. Под нижней таблицей вычерчиваем спрямленный план линии.

Пользуясь размеченными пикетами, в соответствии с заданием на проект на плане путей показывают искусственные сооружения, а на спрямленном плане линии показываем километровые знаки, направление, радиус и длину кривого участка пути, границы расположения высоких насыпей и глубоких выемок, повторяем изображение искусственных сооружений.

Пикеты искусственных сооружений, сигналов, кривой, насыпи, и выемки обозначают в графе «Пикетаж искусственных сооружений» нижней таблицы в виде дроби, числитель которой обозначает расстояние в метрах до одного пикета, знаменатель – до другого. В сумме эти числа должны быть равны 100, т. к. расстояние между двумя нормальными пикетами равно 100 м.

Разбивка перегона на анкерные участки. Расстановку опор начинаем с переноса на план перегона опор изолирующих сопряжений станции, к которой примыкает перегон. Расположение этих опор на плане перегона должно быть увязано с их расположением на плане станции. Увязку осуществляем по входному сигналу, который обозначен и на плане станции, и на плане перегона следующим образом: определяют расстояние между сигналом и ближайшей к нему опорой по меткам на плане станции. Это расстояние прибавляем (или отнимаем) к пикетной метке сигнала и получаем пикетную отметку опоры. Затем откладываем от этой опоры длины следующих пролетов, указанных на плане станции, и получаем пикетные отметки опор изолирующего сопряжения на плане перегона. Пикетные отметки опор заносим в графу «Пикетаж опор» нижней таблицы. После этого вычерчиваем изолирующее сопряжение, т. к. это показано на плане станции, и расставляют зигзаги контактного провода.

Далее намечаем анкерные участки контактной сети и примерное расположение мест их сопряжений. После этого в серединах анкерных участков намечаем примерное расположение мест средних анкеровок с тем. Чтобы при разбивке опор пролеты со средней анкеровкой сократить по сравнению с максимальной расчетной длиной на данном участке перегона.

Намечая анкерные участки подвески, необходимо исходить из следующих соображений:

· количество анкерных участков на перегоне должно быть минимальным;

· максимальная длина анкерного участка контактного провода на прямой принимается не более 1600 м;

· на участках с кривыми длины анкерного участка уменьшают в зависимости от радиуса и расположения кривой;

Если кривая по протяженности не больше половины длины анкерного участка (800 м) и расположена в одном конце или в середине анкерного участка, то длина такого анкерного участка может быть принята равной средней длине, допустимой для прямой и кривой данного радиуса.

В конце перегона должно находиться четырех пролетное изолирующее сопряжение разделяющее перегон и следующую станцию; опоры такого сопряжения относятся уже к плану станции и на плане перегона не учитываются. Иногда в исходных данных задается к проектированию часть перегона, ограничиваемая очередным четырех пролетное изолирующим сопряжением. Опоры такого сопряжения относятся к плану перегона.

Примерное расположение опор сопряжений анкерных участков отмечаем на плане вертикальными линиями, расстояние между которыми в масштабе примерно равно трем допустимым для соответствующего участка пути пролетам. Затем намечаем каким-либо условным знаком места расположения пролетов со средней анкеровкой и только после этого переходим к расстановке опор.

Расстановка опор на перегоне. Расстановка опор производится пролетами, по возможности равными допустимым для соответствующего участка пути и местности, полученным в результате расчетов длин пролетов.

Намечая места установки опор. Следует сразу же заносить их пикетаж в соответствующую графу, между опорами указывать длины пролетов, возле опор стрелками показывать зигзаги контактных проводов.

На прямых участках пути зигзаги (0,3 м) должны быть поочередно направлены у каждой из опор то в одну, то в другую сторону от оси пути, начиная с зигзага анкерной опоры, перенесенного с плана контактной сети станции. На кривых участках пути контактным проводам дают зигзаги в направлении от центра кривой.

В местах перехода с прямого участка пути в кривую зигзаг провода у опоры, установленной на прямом участке пути, может оказаться несвязанным с зигзагом провода у опоры, установленной на кривой. В этом случае следует несколько сократить длину одного - двух пролетов на прямом участке пути, а в некоторых случаях и пролета, частично расположенного на кривой, чтобы можно было у одной из этих опор разместить контактный провод над осью пути (с нулевым зигзагом), а у смежной с ней опоры сделать зигзаг контактного провода в нужную сторону.

Зигзаги контактного провода у смежных опор, расположенных на прямом и кривом участках пути, можно считать увязанными, если большая часть пролета расположена на прямом участке пути и зигзаги контактного провода у опор сделаны в разные стороны или большая часть пролета расположена на кривом участке пути и зигзаги сделаны в одну сторону.

Длины пролетов, расположенных частично на прямых и частично на кривых участках пути, могут быть при этом приняты равными или чуть большими, чем допустимые длины пролетов для кривых участков пути. При разбивке опор разница в длине двух смежных пролетов полукомпенсированной подвески не должна превышать 25% длины большего пролета.

На участках где часто наблюдаются гололедные образования и могут возникнуть автоколебания проводов, разбивку опор следует вести чередующимися пролетами, один из которых равен максимально допустимому, а другой – на 7-8 м меньше. При этом, избегая периодичности чередования пролетов.

Пролеты со средними анкеровками должны быть сокращены: при полукомпенсированной подвеске – один пролет на 10%, а при компенсированной – два пролета на 5% максимальной расчетной длины в этом месте.


Выбор поддерживающих устройств

1. Выбор консолей.

В настоящее время на участках переменного тока применяют неизолированные прямые наклонные консоли.

Условия применения неизолированных консолей в районах с толщиной гололеда до 20 мм и скоростью ветра до 36 м/с на участках переменного тока приведены в таблице

Таблица

Тип опоры Место установки Тип консоли при габарите опор
3,1-3,2 3,2-3,4 3,4-3,5
Промежуточная Прямая НР-1-5
Кривая НС-1-6,5
Внутренняя сторона R<1000 м
R>1000 м
Внешняя сторона R<600 м НР-1-5
R>600 м
Переходная Прямая НР-1-5
Опора А Рабочая
Анкеруемая НС-1-5
Опора Б Рабочая НР-1-5
Анкеруемая НС-1-5

Маркировка консолей: НР-1-5- неизолированная наклонная консоль с растянутой тягой, кронштейном из швеллеров №5, длина кронштейна 4730 мм.

НС-1-5- неизолированная консоль со сжатой тягой, кронштейном из швеллеров №5, длина кронштейна 5230 мм.

2. Выбор фиксаторов

Выбор фиксаторов производят в зависимости от типа консолей и места их установки, а для переходных опор- с учетом расположения рабочей и анкеруемой ветвей подвески относительно опоры. Кроме того, учитывают, для какой из них предназначен фиксатор.

В обозначениях типовых фиксаторов применяют буквы Ф- фиксатор, П- прямой, О- обратный, А- контактного провода анкеруемой ветви, Г- гибкий. В маркировке имеются цифры, характеризующие длины основного стержня.

Выбор фиксаторов сведен в таблицу

Таблица

Назначение фиксаторов. Типы фиксаторов при габарите опор, м
3,1-3,2 3,2-3,3 3,4-3,5
Промежуточные опоры Прямая Зигзаг к опоре ФП-1
Зигзаг от опоры ФО-II
Внешняя сторона кривой R=300 м ФГ-2
R=700 м УФП-2
R=1850 м ФП-II
Внутренняя сторона кривой R=300 м УФО2-I
R=700 м УФО-I
R=1850 м ФОII-(3,5)
Переходные опоры Прямая Рабочая ФПИ-I
Опора А
Анкеруемая ФАИ-III
Опора Б Рабочая ФОИ-III
Анкеруемая ФАИ-IV

3. Выбор жестких поперечин.

При выборе жестких поперечин прежде всего определяют требуемую длину жестких поперечин.

L"=Г 1 +Г 2 +∑м+d оп +2*0,15, м

Где: Г 1 , Г 2 - габариты опор поперечины, м

∑м- суммарная ширина междупутий, перекрываемых поперечиной, м

d оп =0,44 м – диаметр опоры в уроне головок рельсов

2*0,15 м – строительный допуск на установку опор поперечины.

Выбор жестких поперечин свожу в таблицу

Таблица

4. Выбор опор

Важнейшей характеристикой опор является их несущая способность- допустимый изгибающий момент М 0 в уровне условного обреза фундамента. По несущей способности и подбирают типы опор для применения в конкретных условиях установки.

Выбор опор свожу в таблицу

Таблица

Место установки Тип опоры Марка стойки
Прямая Промежуточная СО-136,6-1
Переходная СО-136,6-2
Анкерная СО-136,6-3
Под жесткой поперечиной (от 3-5 путей) Промежуточная СО-136,6-2
Под жесткой поперечиной (от 5-7 путей) Промежуточная СО-136,6-3
Анкерная СО-136,7-4
Кривая R<800 м СО-136,6-3

Механический расчет анкерного участка полукомпенсированной подвески

Для расчёта выбираем один из анкерных участков главного пути станции. Основной целью механического расчёта цепной подвески является составление монтажных кривых и таблиц. Расчёт выполняем в следующей последовательности:

1. Определяем расчётный эквивалентный пролёт по формуле:

где l i – длина i – го пролёта, м;

L а – длина анкерного участка, м;

n – число пролётов.

Эквивалентный пролет для первого анкерного участка перегона:

2. Устанавливаем исходный расчётный режим, при котором возможно наибольшее натяжение несущего троса. Для этого определяем величину критического пролёта.

(17)

где Z max – максимальное приведённое натяжение подвески, Н;

W г и W t min – приведённые линейные нагрузки на подвеску соответственно при гололёде с ветром и при минимальной температуре, Н/м;

Температурный коэффициент линейного расширения материала несущего троса 1/ 0 С.

Приведённые величины Z x и W x для режима “X” вычисляем по формулам:

, Н;

, Н/м;

при отсутствии горизонтальных нагрузок q x = g x выражение примет вид:

, Н/м;

при полном отсутствии дополнительных нагрузок g x = g 0 и тогда приведённая нагрузка будет определяться по формуле:

Н/м; (18)


Здесь g x , q x – соответственно вертикальная и результирующая нагрузки на несущий трос в режиме “X”, Н/м;

К – натяжение контактного провода (проводов), Н;

Т 0 – натяжение несущего троса при беспровесном положении контактного провода, Н;

j x – конструктивный коэффициент цепной подвески, определяемый по формуле:

,

Величина “c” в выражении означает расстояние от оси опоры до первой простой струны (для подвески с рессорным тросом обычно 8 – 10 м).

У полукомпенсированной цепной подвески контактный провод имеет возможность перемещения при изменении его длины в пределах анкерного участка за счёт наличия компенсации. Несущий трос также можно рассматривать как свободно закреплённый провод, так как поворот гирлянды изоляторов и применение поворотных консолей дают ему аналогичную возможность.

Для свободно подвешенных проводов исходный расчётный режим определяется сравнением эквивалентного L э < L кр, то максимальное натяжение несущего троса T max ,будет при минимальной температуре, а если L э > L кр, то натяжение T max будет возникать при гололёде с ветром. Проверку правильности выбора исходного режима осуществляют при сравнении результирующей нагрузки при гололёде q гн с критической нагрузкой q кр



Натяжение несущего троса при беспровесном положении контактного провода определяется при условии, когда j х = 0 (для рессорных подвесок), по формуле:

(19)


Здесь величины с индексом “1” относятся к режиму максимального натяжения несущего троса, а с индексом “0” – к режиму беспровесного положения контактного провода. Индекс “н” относится к материалу несущего троса, например E н – модуль упругости материала несущего троса.

5. Натяжение разгруженного несущего троса определяется по аналогичному выражению:

(20)

Здесь g н – нагрузка от собственного веса несущего троса, Н/м.

Значение A 0 в равно значению A 1 поэтому вычислять A 0 нет необходимости. Задаваясь различными значениями T рх, определяются температуры t x . По результатам расчетов построим монтажные кривые

Стрелы провеса разгруженного несущего троса при температурах tx в реальных пролетах Li анкерного участка:

Рис. 3 Стрелы провеса разгруженного несущего троса в реальных пролетах


7. Стрелы провеса несущего троса F xi в пролёте l i вычисляются из выражения:

,


; (22)

при отсутствии дополнительных нагрузок (гололёд, ветер) q x = g x = g, поэтому приведённая нагрузка в рассматриваемом случае:

,

,

; ;


Рис. 4 Стрелы провеса нагруженного несущего троса

Расчеты натяжения несущего троса при режимах с дополнительными нагрузками, где величины с индексом x относятся к искомому режиму (гололеда с ветром или ветер максимальной интенсивности). Полученные результаты наносятся на график.


8. Стрела провеса контактного провода и его вертикального перемещения у опор для реальных пролётов определяется соответственно по формулам:

, (23)


где ;

Здесь b 0i – расстояние от несущего троса до рессорного троса против опоры при беспровесном положении контактного провода для реального пролёта, м;

H 0 – натяжение рессорного троса, обычно принимают H 0 = 0.1T 0 .

(24)


Рис. 6 Стрелы провеса контактного провода в реальных пролетах при дополнительных нагрузках



Выбор способа прохода контактной подвески в искусственных сооружениях

На станции:

Проход контактной подвески под искусственными сооружениях, ширина корторых составляет не более межструнного расстояния (2-12м), в т.ч. под пешеходными мостиками, может быть осуществлен по одному из трех способов:

Искусственное сооружение используется в качестве опоры;

Контактная подвеска пропускается без крепления к искусственному сооружению;

В несущий трос включается изолированная вставка, которая крепится к искусственному сооружению.

Для выбора одного из способов необходимо выполнение соответствующего условия:

Для первого случая:

где - расстояние от уровня головок рельса до нижнего края искусственного сооружения;

Минимальная допустимая высота контактных проводов над уровнем головок рельса;

Наибольшая стрела провеса контактных проводов при стреле провеса несущего троса;

Минимальное расстояние между несущим тросом и контактным проводом в середине пролета;

Максимальная стрела провеса несущего троса;

Длина гирлянды изоляторов:

Минимальная стрела провеса несущего троса;

Часть стрелы провеса несущего троса при минимальной температуре на расстоянии от наибольшего приближения к искусственному сооружению до середины пролета;

Подъем несущего троса под воздействием токоприемника при минимальной температуре;

Минимальное допустимое расстояние между токоведущими и заземленными частями;

Допустимое расстояние от контактного провода до отбойника.

По результатам этого расчёта приходим к выводу,что для прохода контактной подвески под пешеходным мостом высотой 8,3 метра, в нашем случае необходимо использовать третий способ: в несущий трос врезается изолированная вставка,которая крепится к мосту.

На перегоне:

Контактная подвеска на мостах с ездой понизу и низкими ветровыми связями пропускается с креплением несущего троса на специальные конструкции, устанавливаемые выше ветровых связей. Контактный провод при этом пропускается с креплением под ветровыми связями с уменьшенной длиной пролета до 25 м. Высота конструкции выбирается из выражений:

Для полукомпенсированной подвески:


Список используемой литературы

1. Марквардт К. Г., Власов И. И. Контактная сеть. – М.: Транспорт, 1997.- 271с.

2. Фрайфельд А. В. Проектирование контактной сети.- М.: Транспорт, 1984,-397с.

3. Справочник по электроснабжению железных дорог. /Под редакцией К.Г. Марквардта – М.: Транспорт, 1981. – Т. 2- 392с.

4. Нормы проектирования контактной сети (ВСН 141 - 90). – М.: Минтранстрой, 1992. – 118с.

5. Контактная сеть. Задание на курсовой проект с методическими указаниями-М-1991-48с.

Методическое пособие

К выполнению практических занятий

По дисциплине «Контактная сеть».

1. Подбор деталей и материалов для узлов контактной сети.

2. Определение нагрузок, действующих на провода контактной сети.

3. Подбор типовых консолей и фиксаторов для заданной схемы расположения опор.

4. Расчёт изгибающего момента, действующего на опору, и подбор типовой промежуточной опоры.

5. Оформление оперативно-технической документации при производстве работ на контактной сети.

6. Оформление оперативно-технической документации при производстве работ на контактной сети.

7. Проверка технического состояния, регулировка и ремонт воздушной стрелки.

8. Проверка состояния, регулировка и ремонт секционного изолятора.

9. Проверка состояния, регулировка и ремонт секционного разъединителя.

10. Проверка состояния, регулировка и ремонт разрядников различных типов.

11. Проверка состояния, регулировка и ремонт изолирующего сопряжения..

12. Механический расчёт анкерного участка цепной контактной подвески.

13. Определение натяжений нагруженного несущего троса.

14. Расчет стрел провеса и построение монтажных кривых несущего троса и контактного провода.

15. Составление перечня необходимых материалов, поддерживающих и фиксирующих устройств для контактной сети перегона.


Пояснительная записка.

Методическое пособие содержит варианты практических занятий по дисциплине «Контактная сеть». Целью занятий является закрепление знаний, полученных в теоретическом курсе дисциплины, приобретение практических навыков по проверке состояния и регулировке отдельных узлов контактной сети, навыков использования технической литературы. Тематика предлагаемых практических занятий выбрана согласно рабочей программе дисциплины и действующему стандарту специальности 1004.01 «Электроснабжение на железнодорожном транспорте».

Для выполнения занятий в аудитории «Контактная сеть» необходимо иметь основные элементы контактной сети или их макеты, стенды, необходимые плакаты, фотографии, измерительные и регулировочные инструменты.

В ряде работ для лучшего запоминания и усвоения материала предлагается изображать отдельные узлы контактной сети, описывать их назначение и требования к ним.

При выполнении практических занятий студенты должны пользоваться справочной, нормативной и технической литературой.

Следует обращать внимание на мероприятия по технике безопасности, обеспечивающие безопасность производства работ по техническому обслуживанию и ремонту устройств контактной сети.

Практическое занятие №1

Подбор деталей и материалов для узлов контактной сети.

Цель занятия: научиться практически выбирать детали для заданной цепной контактной подвески.

Исходные данные: тип цепной контактной подвески, узел цепной контактной подвески (задаются преподавателем согласно таблицам 1.1, 1.2).

Таблица 1.1.Типы контактных подвесок.

Номер варианта Несущий трос Контактный провод Система тока Тип подвески
боковой путь
- ПБСМ-70 МФ-85 постоянный переменный КС 70
главный путь
М-120 БрФ-100 постоянный КС 140
М-95 МФ-100 постоянный КС 160
М-95 2МФ-100 постоянный КС 120
М-120 2МФ-100 постоянный КС 140
М-120 2МФ-100 постоянный КС 160
ПБСМ-95 НлФ-100 переменный КС 120
М-95 БрФ-100 переменный КС 160
ПБСМ-95 БрФ-100 переменный КС 140
М-95 МФ-100 переменный КС 160
ПБСМ-95 МФ-100 переменный КС 140

Таблица 1.2. Узел цепной контактной подвески.

Краткие теоретические сведения:

При выборе опорного узла цепной контактной подвески и определении способа анкеровки проводов цепной контактной подвески необходимо учитывать скорости движения поездов по данному участку и то, что чем выше скорость движения поездов, тем большей эластичностью должна обладать цепная контактная подвеска.

Арматура контактных сетей представляет собой комплекс деталей, предназначенных для крепления конструкций, фиксации поводов и тросов, сборки различных узлов контактной сети. Арматура должна обладать достаточной механической прочностью, хорошей сопрягаемостью, высокой надёжностью и такой же коррозийной стойкостью, а для скоростного токосъёма – ещё и минимальной массой.

Все детали контактных сетей можно разделить на две группы: механическую и токопроводящую.

К первой группе относятся детали, рассчитанные на чисто механические нагрузки. К ней относятся: клиновой зажим, цанговый зажим для несущего троса, седла, коуши вилочные, ушки разрезные и неразрезные и т.п.

Ко второй группе относятся детали, рассчитанные на механические и электрические нагрузки. К ней относятся: цанговые стыковые зажимы для стыкования несущего троса, овальные соединители, стыковые зажимы для контактного провода, струновые, соединительные и переходные зажимы. По материалу изготовления детали арматуры делятся на чугунные (ковкий или серый чугун), стальные, из цветных металлов и их сплавов (медь, бронза, алюминий, латунь).

Изделия из чугуна имеют защитное антикоррозийное покрытие – горячее оцинкование, а из стали – электролитическое оцинкование с последующим хромированием.

Порядок выполнения практического занятия:

1. Выбрать опорный узел для заданной контактной подвески и зарисовать его со всеми геометрическими параметрами (Л.1, стр.80).

2. Выбрать материал и сечение проводов для простых и рессорных струн опорного узла.

3. Выбрать детали для заданного узла, пользуясь Л.9 или Л10 или Л11.

Выбранные детали занести в таблицу 1.3.

4. Выбрать деталь для стыкования контактного провода и соединения несущего троса. Выбранные детали занести в таблицу 1.3.

Таблица 1.3. Детали для узлов контактной подвески.

5. Описать назначение и место установки продольных и поперечных электрических соединителей.

6. Описать назначение неизолирующих сопряжений. Зарисовать схему неизолирующего сопряжения и обозначить все основные габариты.

7. Оформить отчёт. Сделать выводы по выполненному занятию.

Контрольные вопосы:

1. Какие нагрузки воспринимают детали контактной сети?

2. От чего зависит выбор типа опорного узла цепной контактной подвески?

3. Какими способами можно сделать эластичность цепной контактной подвески равномерной?

4. Почему для несущих тросов можно применять материалы, не обладающие высокой проводимостью?

5. Сформулируйте назначение и типы средних анкеровок.

6. От чего зависит способ крепления несущего троса на поддерживающей конструкции?


Рис.1.1. Анкеровка компенсированной цепной контактной подвески переменного (а ) и постоянного (б ) тока:

1- оттяжка анкерная; 2- кронштейн анкерный; 3, 4, 19 – трос компенсатора стальной диаметром 11 мм длиной, соответственно, 10, 11, 13 м; 5- блок компенсатора; 6- коромысло; 7- штанга «ушко-двойное ушко» длиной 150 мм; 8- пластина регулиовочная; 9- изолятор с пестиком; 10- изолятор с серьгй; 11- электрический соединитель; 12- коромысло с двумя штангами; 13, 22- хомут, соответственно, для 25-30 грузов; 15- груз железобетонный; 16- трос ограничителя грузов; 17- кронштейн ограничителя грузов; 18- монтажные отверстия; 20- штанга «пестик-ушко» длиной 1000 мм; 21- коромысло для крепления двух контактных проводов; 23- штанга для 15 грузов; 24- ограничитель для одинарной гирлянды грузов.

Рис.1.2.Анкеровка полукомпенсированной цепной подвески переменного тока с двухблочным компенсатором (а ) и постоянного тока с трёхблочным компенсатором (б ):

1- оттяжка анкерная; 2- кронштейн анкерный; 3- штанга «пестик- двойное ушко» длиной 1000 мм;4- изолятор с пестиком; 5- изолятор с серьгой; 6- трос компенсатора стальной диаметром 11 мм; 7- блок компенсатора; 8- штанга «пестик - ушко» длиной 1000 мм; 9- штанга для грузов; 10- груз железобетонный; 11- ограничитель для одинарной гирлянды грузов; 12- трос ограничителя грузов; 13- кронштейн ограничителя грузов; 14- трос компенсатора стальной диаметром 10 мм, длиной 10 м; 15- хомут для грузов; 16- ограничитель для сдвоенной гирлянды грузов; 17- коромысло для анкеровки двух проводов.

Рис.1.3. Средняя анкеровка компенсированной (а-д) и полукомпенсированной (е ) цепных контактных подвесок; для одинарного контактного провода ( б ), двойного контактного провода (г ); на изолированной консоли (в ) и на неизолированной консоли (д ).

Контактная сеть представляет собой комплекс устройств для передачи электроэнергии от тяговых подстанций к ЭПС через токоприемники. Она является частью тяговой сети и для рельсового электрифицированного транспорта обычно служит ее фазой (при переменном токе) или полюсом (при постоянном токе); другой фазой (или полюсом) служит рельсовая сеть. Контактная сеть может быть выполнена с контактным рельсом или с контактной подвеской.
В контактной сети с контактной подвеской основными являются следующие элементы: провода – контактный провод, несущий трос, усиливающий провод и пр.; опоры; поддерживающие и фиксирующие устройства; гибкие и жесткие поперечины (консоли, фиксаторы); изоляторы и арматура различного назначения.
Контактную сеть с контактной подвеской классифицируют по видам электрифицированного транспорта, для которого она предназначена, – ж.-д. магистрального, городского (трамвая, троллейбуса), карьерного, рудничного подземного рельсового транспорта и др.; по роду тока и номинальному напряжению питающегося от сети ЭПС; по размещению контактной подвески относительно оси рельсового пути – для центрального токосъема (на магистральном ж.-д. транспорте) или бокового (на путях промышленного транспорта); по типам контактной подвески – с простой, цепной или специальной; по особенностям выполнения анкеровки контактного провода и несущего троса, сопряжений анкерных участков и др.
Контактная сеть предназначена для работы на открытом воздухе и поэтому подвержена воздействию климатических факторов, к которым относятся: температура окружающей среды, влажность и давление воздуха, ветер, дождь, иней и гололед, солнечная радиация, содержание в воздухе различных загрязнений. К этому необходимо добавить тепловые процессы, возникающие при протекании тягового тока по элементам сети, механическое воздействие на них со стороны токоприемников, электрокоррозионные процессы, многочисленные циклические механические нагрузки, износ и др. Все устройства контактной сети должны быть способны противостоять действию перечисленных факторов и обеспечивать высокое качество токосъема в любых условиях эксплуатации.
В отличие от других устройств электроснабжения, контактная сеть не имеет резерва, поэтому к ней по надежности предъявляют повышенные требования, с учетом которых осуществляются ее проектирование, строительство и монтаж, техническое обслуживание и ремонт.

Проектирование контактной сети

При проектировании контактной сети (КС) выбирают число и марку проводов, исходя из результатов расчетов системы тягового электроснабжения, а также тяговых расчетов; определяют тип контактной подвески в соответствии с максимальными скоростями движения ЭПС и другими условиями токосъема; находят длины пролета (гл. обр. по условиям обеспечения ее ветроустойчивости, а при высоких скоростях движения – и заданного уровня неравномерности эластичности); выбирают длину анкерных участков, типы опор и поддерживающих устройств для перегонов и станций; разрабатывают конструкции КС в искусственных сооружениях; размещают опоры и составляют планы контактной сети на станциях и перегонах с согласованием зигзагов проводов и учетом выполнения воздушных стрелок и элементов секционирования контактной сети (изолирующих сопряжений анкерных участков и нейтральных вставок, секционных изоляторов и разъединителей).
Основные размеры (геометрические показатели), характеризующие размещение контактной сети относительно других устройств, – высота Н подвешивания контактного провода над уровнем верха головки рельса; расстояние А от частей, находящихся под напряжением, до заземленных частей сооружений и подвижного состава; расстояние Г от оси крайнего пути до внутреннего края опор, находящегося на уровне головок рельсов, – регламентированы и в значительной мере определяют конструктивное выполнение элементов контактной сети (рис. 8.9).

Совершенствование конструкций контактной сети направлено на повышение ее надежности при снижении стоимости строительства и эксплуатации. Железобетонные опоры и фундаменты металлических опор выполняют с защитой от электрокоррозионного воздействия на их арматуру блуждающих токов. Увеличение срока службы контактных проводов достигается, как правило, применением на токоприемниках вставок с высокими антифрикционными свойствами (угольных, в т. ч. металлосодержащих; металлокерамических и др.), выбором рациональной конструкции токоприемников, а также оптимизацией режимов токосъема.
Для повышения надежности контактной сети осуществляют плавку гололеда, в т.ч. без перерыва движения поездов; применяют ветроустойчивые контактные подвески и т. д. Оперативности выполнения работ на контактной сети способствует применение телеуправления для дистанционного переключения секционных разъединителей.

Анкеровка проводов

Анкеровка проводов – прикрепление проводов контактной подвески через включенные в них изоляторы и арматуру к анкерной опоре с передачей на нее их натяжения. Анкеровка проводов бывает некомпенсированная (жесткая) или компенсированная (рис. 8.16) через компенсатор, изменяющий длину провода в случае изменения его температуры при сохранении заданного натяжения.

В середине анкерного участка контактной подвески выполняется средняя анкеровка (рис. 8.17), которая препятствует нежелательным продольным перемещениям в сторону одной из анкеровок и позволяет ограничить зону повреждения контактной подвески при обрыве одного из ее проводов. Трос средней анкеровки прикрепляют к контактному проводу и несущему тросу соответствующей арматурой.

Компенсация натяжения проводов

Компенсация натяжения проводов (автоматическое регулирование) контактной сети при изменении их длины в результате температурных воздействий осуществляется компенсаторами различных конструкций -блочно-грузовыми, с барабанами различного диаметра, гидравлическими, газогидравлическими, пружинными и др.
Наиболее простым является блочно-грузовой компенсатор, состоящий из груза и нескольких блоков (полиспаста), через которые груз присоединяют к анкеруемому проводу. Наибольшее распространение получил трех-блочный компенсатор (рис. 8.18), в котором неподвижный блок закреплен на опоре, а два подвижных вложены в петли, образуемые тросом, несущим груз и закрепленным другим концом в ручье неподвижного блока. Анкеруемый провод через изоляторы прикреплен к подвижному блоку. В этом случае вес груза составляет 1/4 номинального натяжения (обеспечивается передаточное отношение 1:4), но перемещение груза вдвое больше, чем у двух-6лочного компенсатора (с одним подвижным блоком).

компенсаторах с барабанами разного диаметра (рис. 8.19) на барабан малого диаметра наматываются тросы, связанные с анкеру емыми проводами, а на барабан большего диаметра – трос, связанный с гирляндой грузов. Тормозное устройство служит для предотвращения повреждений контактной подвески при обрыве провода.

При особых условиях эксплуатации, особенно при ограниченных габаритах в искусственных сооружениях, незначительных перепадах температуры нагрева проводов и т. д., применяют компенсаторы и других типов для проводов контактной подвески, фиксирующих тросов и жестких поперечин.

Фиксатор контактного провода
Фиксатор контактного провода – устройство для фиксации положения контактного провода в горизонтальной плоскости относительно оси токоприемников. На криволинейных участках, где уровни головок рельсов различны и ось токоприемника не совпадает с осью пути, применяют несочлененные и сочлененные фиксаторы.
Несочлененный фиксатор имеет один стержень, оттягивающий контактный провод от оси токоприемника к опоре (растянутый фиксатор) или от опоры (сжатый фиксатор) на размер зигзага. На электрифицированных ж. д. несочлененные фиксаторы применяют очень редко (в анкеруемых ветвях контактной подвески, на некоторых воздушных стрелках), т. к. образующаяся при этих фиксаторах «жесткая точка» на контактном проводе ухудшает токосъем.

Сочлененный фиксатор состоит из трех элементов: основного стержня, стойки и дополнительного стержня, на конце которого крепится фиксирующий зажим контактного провода (рис. 8.20). Вес основного стержня не передается на контактный провод, и он воспринимает только часть веса дополнительного стержня с фиксирующим зажимом. Стержни имеют форму, обеспечивающую надежный проход токоприемников при отжатии ими контактного провода. Для скоростных и высокоскоростных линий применяют облегченные дополнительные стержни, например, выполненные из алюминиевых сплавов. При двойном контактном проводе на стойке устанавливают два дополнительных стержня. На внешней стороне кривых малых радиусов монтируют гибкие фиксаторы в виде обычного дополнительного стержня, который через трос и изолятор крепят к кронштейну, стойке или непосредственно к опоре. На гибких и жестких поперечинах с фиксирующими тросами обычно используют полосовые фиксаторы (по аналогии с дополнительным стержнем), закрепленные шарнирно зажимами с ушком, установленным на фиксирующем тросе. На жестких поперечинах можно также крепить фиксаторы на специальных стойках.

Анкерный участок

Анкерный участок – участок контактной подвески, границами которого являются анкерные опоры. Деление контактной сети на анкерные участки необходимо для включения в провода устройств, поддерживающих натяжение проводов при изменении их температуры и осуществления продольного секционирования контактной сети. Это деление уменьшает зону повреждения в случае обрыва проводов контактной подвески, облегчает монтаж, техн. обслуживание и ремонт контактной сети. Длина анкерного участка ограничивается допустимыми отклонениями от задаваемого компенсаторами номинального значения натяжения проводов контактной подвески.
Отклонения вызваны изменениями положения струн, фиксаторов и консолей. Например, при скоростях движения до 160 км/ч максимальная длина анкерного участка при двусторонней компенсации на прямых участках не превышает 1600 м, а при скоростях 200 км/ч допускается не более 1400 м. В кривых длина анкерных участков уменьшается тем больше, чем больше протяженность кривой и меньше ее радиус. Для перехода с одного анкерного участка на следующий выполняют неизолирующие и изолирующие сопряжения.

Сопряжение анкерных участков

Сопряжение анкерных участков – функциональное объединение двух смежных анкерных участков контактной подвески, обеспечивающее удовлетворительный переход токоприемников ЭПС с одного из них на другой без нарушения режима токосъема благодаря соответствующему размещению в одних и тех же (переходных) пролетах контактной сети конца одного анкерного участка и начала другого. Различают сопряжения неизолирующие (без электрического секционирования контактной сети) и изолирующие (с секционированием).
Неизолирующие сопряжения выполняют во всех случаях, когда требуется включить в провода контактной подвески компенсаторы. При этом достигается механическая независимость анкерных участков. Такие сопряжения монтируют в трех (рис. 8.21,а) и реже в двух пролетах. На высокоскоростных магистралях сопряжения иногда выполняют в 4-5 пролетах из-за более высоких требований к качеству токосъема. На неизолирующих сопряжениях имеются продольные электрические соединители, площадь сечения которых должна быть эквивалентна площади сечения проводов контактной сети.

Изолирующие сопряжения применяют при необходимости секционирования контактной сети, когда, кроме механической, нужно обеспечить и электрическую независимость сопрягаемых участков. Такие сопряжения устраивают с нейтральными вставками (участками контактной подвески, на которых нормально напряжение отсутствует) и без них. В последнем случае обычно применяют трех-или четырехпролетные сопряжения, располагая контактные провода сопрягаемых участков в среднем пролете (пролетах) на расстоянии 550 мм один от другого (рис. 8.21,6). При этом образуется воздушный промежуток, который совместно с изоляторами, включенными в приподнятые контактные подвески у переходных опор, обеспечивает электрическую независимость анкерных участков. Переход полоза токоприемника с контактного провода одного анкерного участка на другой происходит так же, как и при неизолирующем сопряжении. Однако, когда токоприемник находится в среднем пролете, электрическая независимость анкерных участков нарушается. Если такое нарушение недопустимо, применяют нейтральные вставки разной длины. Ее выбирают такой, чтобы при нескольких поднятых токоприемниках одного поезда было исключено одновременное перекрытие обоих воздушных промежутков, что привело бы к замыканию проводов, питающихся от разных фаз и находящихся под различными напряжениями. Сопряжение с нейтральной вставкой во избежание пережога контактного провода ЭПС проходит на выбеге, для чего за 50 м до начала вставки устанавливают сигнальный знак «Отключить ток», а после конца вставки при электровозной тяге через 50 м и при моторвагонной тяге через 200 м – знак «Включить ток» (рис. 8.21,в). На участках со скоростным движением необходимы автоматические средства отключения тока на ЭПС. Чтобы можно было вывести поезд при его вынужденной остановке под нейтральной вставкой, предусмотрены секционные разъединители для временной подачи напряжения на нейтральную вставку со стороны направления движения поезда.

Секционирование контактной сети
Секционирование контактной сети – разделение контактной сети на отдельные участки (секции), электрически разъединенные изолирующими сопряжениями анкерных участков или секционными изоляторами. Изоляция может быть нарушена во время прохода токоприемника ЭПС по границе раздела секций; если такое замыкание недопустимо (при питании смежных секций от различных фаз или принадлежности их к различным системам тягового электроснабжения), между секциями размещают нейтральные вставки. В условиях эксплуатации электрическое соединение отдельных секций осуществляют, включая секционные разъединители, установленные в соответствующих местах. Секционирование необходимо также для надежной работы устройств электроснабжения в целом, оперативного технического обслуживания и ремонта контактной сети с отключением напряжения. Схема секционирования предусматривает такое взаимное расположение секций, при котором отключение одной из них в наименьшей степени влияет на организацию движения поездов.
Секционирование контактной сети бывает продольным и поперечным. При продольном секционировании осуществляют разделение контактной сети каждого главного пути вдоль электрифицированной линии у всех тяговых подстанций и постов секционирования. В отдельные продольные секции выделяют контактную сеть перегонов, подстанций, разъездов и обгонных пунктов. На крупных станциях, имеющих несколько электрифицированных парков или групп путей, контактная сеть каждого парка или групп путей образует самостоятельные продольные секции. На очень крупных станциях иногда выделяют в отдельные секции контактную сеть одной или обеих горловин. Секционируют также контактную сеть в протяженных тоннелях и на некоторых мостах с ездой понизу. При поперечном секционировании осуществляют разделение контактной сети каждого из главных путей на всем протяжении электрифицированной линии. На станциях, имеющих значительное путевое развитие, применяют дополнительное поперечное секционирование. Число поперечных секций определяется числом и назначением отдельных путей, а в ряде случаев и режимами трогания ЭПС, когда необходимо использовать площадь сечения контактных подвесок соседних путей.
Секционирование с обязательным заземлением отключенной секции контактной сети предусматривают для путей, на которых могут находиться люди на крышах вагонов или локомотивов, либо путей, вблизи которых работают подъемно-транспортные механизмы (погрузочно-разгрузочные, экипировочные пути и др.). Для обеспечения большей безопасности работающих в этих местах соответствующие секции контактной сети соединяют с другими секциями секционными разъединителями с заземляющими ножами; эти ножи заземляют отключаемые секции при отключении разъединителей.

На рис. 8.22 приведен пример схемы питания и секционирования станции, расположенной на двухпутном участке линии, электрифицированной на переменном токе. На схеме показаны семь секций – четыре на перегонах и три на станции (одна из них с обязательным заземлением при ее отключении). Контактная сеть путей левого перегона и станции получает питание от одной фазы энергосистемы, а путей правого перегона – от другой. Соответственно выполнено секционирование с помощью изолирующих сопряжений и нейтральных вставок. На участках, где требуется плавка гололеда, на нейтральной вставке устанавливают два секционных разъединителя с моторными приводами. Если плавка гололеда не предусмотрена, достаточно одного секционного разъединителя с ручным приводом.

Для секционирования контактной сети главных и боковых сетей на станциях применяют секционные изоляторы. В некоторых случаях секционные изоляторы используют для образования на контактной сети переменного тока нейтральных вставок, которые ЭПС проходит, не потребляя тока, а также на путях, где длина съездов недостаточна для размещения изолирующих сопряжений.
Соединение и разъединение различных секций контактной сети, а также соединение с питающими линиями осуществляют с помощью секционных разъединителей. На линиях переменного тока, как правило, применяют разъединители горизонтально-поворотного типа, на линиях постоянного тока – вертикально-рубящего. Управляют разъединителем дистанционно с пультов, установленных в дежурном пункте района контактной сети, в помещениях дежурных по станциям и в других местах. Наиболее ответственные и часто переключаемые разъединители установлены в сети диспетчерского телеуправления.
Различают разъединители продольные (для соединения и разъединения продольных секций контактной сети), поперечные (для соединения и разъединения ее поперечных секций), фидерные и др. Их обозначают буквами русского алфавита (например, продольные -А, Б, В, Г; поперечные – П; фидерные – Ф) и цифрами, соответствующими номерам путей и секций контактной сети (например, П23).
Для обеспечения безопасности проведения работ на отключенной секции контактной сети или вблизи нее (в депо, на путях экипировки и осмотра крышевого оборудования ЭПС, на путях погрузки и разгрузки вагонов и др.) устанавливают разъединители с одним заземляющим ножом.

Воздушная стрелка

Воздушная стрелка – образована пересечением двух контактных подвесок над стрелочным переводом; предназначена для обеспечения плавного и надежного прохода токоприемника с контактного провода одного пути на контактный провод другого. Пересечение проводов осуществляется наложением одного провода (как правило, примыкающего пути) на другой (рис. 8.23). Для подъема обоих проводов при подходе токоприемника к воздушной стрелке на нижнем проводе укреплена ограничительная металлическая труба длиной 1-1,5 м. Верхний провод располагают между трубкой и нижним проводом. Пересечение контактных проводов над одиночным стрелочным переводом осуществляют со смещением каждого провода к центру от осей путей на 360-400 мм и располагают там, где расстояние между внутренними гранями головок соединительных рельсов крестовины составляет 730-800 мм. На перекрестных стрелочных переводах и при т. н. глухих пересечениях провода перекрещиваются над центром стрелочного перевода или пересечения. Воздушные стрелки выполняют, как правило, фиксированными. Для этого на опорах устанавливают фиксаторы, удерживающие контактные провода в заданном положении. На станционных путях (кроме главных) стрелки могут быть выполнены нефиксированными, если провода над стрелочным переводом располагаются в положении, заданном регулировкой зигзагов у промежуточных опор. Струны контактной подвески, находящиеся вблизи стрелок, должны быть двойными. Электрический контакт между контактными подвесками, образующими воздушную стрелку, обеспечивает электрический соединитель, установленный на расстоянии 2-2,5 м от места пересечения со стороны остряка. Для повышения надежности применяют конструкции стрелок с дополнительными перекрестными связями между проводами обеих контактных подвесок и скользящие поддерживающие двойные струны.

Опоры контактной сети

Опоры контактной сети – конструкции для закрепления поддерживающих и фиксирующих устройств контактной сети, воспринимающие нагрузку от ее проводов и других элементов. В зависимости от вида поддерживающего устройства опоры разделяют на консольные (однопутного и двухпутного исполнения); стойки жестких поперечин (одиночные или спаренные); опоры гибких поперечин; фидерные (с кронштейнами только для питающих и отсасывающих проводов). Опоры, на которых отсутствуют поддерживающие, но имеются фиксирующие устройства, называются фиксирующими. Консольные опоры разделяют на промежуточные – для крепления одной контактной подвески; переходные, устанавливаемые на сопряжениях анкерных участков,- для крепления двух контактных проводов; анкерные, воспринимающие усилие от анкеровки проводов. Как правило, опоры выполняют одновременно несколько функций. Например, опора гибкой поперечины может быть анкерной, на стойках жесткой поперечины могут быть подвешены консоли. К стойкам опор можно закрепить кронштейны для усиливающих и других проводов.
Опоры изготавливают железобетонными, металлическими (стальными) и деревянными. На отечественных ж. д. применяют в основном опоры из предварительно напряженного железобетона (рис. 8.24), конические центрифугированные, стандартной длины 10,8; 13,6; 16,6 м. Металлические опоры устанавливают в тех случаях, когда по несущей способности или по размерам невозможно использовать железобетонные (например, в гибких поперечинах), а также на линиях с высокоскоростным движением, где предъявляются повышенные требования к надежности опорных конструкций. Деревянные опоры применяют только как временные.

Для участков постоянного тока железобетонные опоры изготавливают с дополнительной стержневой арматурой, расположенной в фундаментной части опор и предназначенной для уменьшения повреждений арматуры опор электрокоррозией, вызываемой блуждающими токами. В зависимости от способа установки железобетонные опоры и стойки жестких поперечин бывают раздельные и нераздельные, устанавливаемые непосредственно в грунт. Требуемая устойчивость нераздельных опор в грунте обеспечивается верхним лежнем или опорной плитой. В большинстве случаев применяют нераздельные опоры; раздельные используют при недостаточной устойчивости нераздельных, а также при наличии грунтовых вод, затрудняющих установку нераздельных опор. В анкерных железобетонных опорах применяют оттяжки, которые устанавливают вдоль пути под углом 45° и крепят к железобетонным анкерам. Железобетонные фундаменты в надземной части имеют стакан глубиной 1,2 м, в который устанавливают опоры и затем заделывают пазухи стакана цементным раствором. Для заглубления фундаментов и опор в грунт используют преимущественно способ вибропогружения.
Металлические опоры гибких поперечин изготавливают обычно четырехгранной пирамидальной формы, их стандартная длина 15 и 20 м. Продольные вертикальные стойки из углового проката соединяют треугольной решеткой, выполненной также из уголка. В районах, отличающихся повышенной атмосферной коррозией, металлические консольные опоры длиной 9,6 и 11 м закрепляют в грунте на железобетонных фундаментах. Консольные опоры устанавливают на призматических трехлучевых фундаментах, опоры гибких поперечин – либо на раздельных железобетонных блоках, либо на свайных фундаментах с ростверками. Основание металлических опор соединяют с фундаментами анкерными болтами. Для закрепления опор в скальных грунтах, пучинистых грунтах районов вечной мерзлоты и глубокого сезонного промерзания, в слабых и заболоченных грунтах и т. п. применяют фундаменты специальных конструкций.

Консоль

Консоль – поддерживающее устройство, закрепленное на опоре, состоящее из кронштейна и тяги. В зависимости от числа перекрываемых путей консоль может быть одно-, двух- и реже многопутной. Для исключения механической связи между контактными подвесками различных путей и повышения надежности чаще используют однопутные консоли. Применяют неизолированные, или заземленные консоли, при которых изоляторы находятся между несущим тросом и кронштейном, а также в стержне фиксатора, и изолированные консоли с изоляторами, размещенными в кронштейнах и тягах. Неизолированные консоли (рис. 8.25) по форме могут быть изогнутыми, наклонными и горизонтальными. Для опор, установленных с увеличенным габаритом, применяют консоли с подкосами. На сопряжениях анкерных участков при монтаже на одной опоре двух консолей используют специальную траверсу. Горизонтальные консоли применяют в тех случаях, когда высота опор достаточна для закрепления наклонной тяги.

При изолированных консолях (рис. 8.26) возможно проводить работы на несущем тросе вблизи них без отключения напряжения. Отсутствие изоляторов на неизолированных консолях обеспечивает большую стабильность положения несущего троса при различных механических воздействиях, что благоприятно сказывается на процессе токосъема. Кронштейны и тяги консолей крепят на опорах с помощью пят, допускающих их поворот вдоль оси пути на 90° в обе стороны относительно нормального положения.

Гибкая поперечина

Гибкая поперечина – поддерживающее устройство для подвешивания и фиксации проводов контактной сети, расположенных над несколькими путями. Гибкая поперечина представляет собой систему тросов, натянутых между опорами поперек электрифицированных путей (рис. 8.27). Поперечные несущие тросы воспринимают все вертикальные нагрузки от проводов цепных подвесок, самой поперечины и других проводов. Стрела провеса этих тросов должна быть не менее Vio длины пролета между опорами: это уменьшает влияние температуры на высоту крепления контактных подвесок. Для повышения надежности поперечин используют не менее двух поперечных несущих тросов.

Фиксирующие тросы воспринимают горизонтальные нагрузки (верхний – от несущих тросов цепных подвесок и других проводов, нижний – от контактных проводов). Электрическая изоляция тросов от опор позволяет обслуживать контактную сеть без отключения напряжения. Все тросы для регулирования их длины закрепляют на опорах с помощью стальных штанг с резьбой; в некоторых странах с этой целью применяют специальные демпферы, преимущественно для крепления контактной подвески на станциях.

Токосъем

Токосъем – процесс передачи электрической энергии от контактного провода или контактного рельса к электрооборудованию движущегося или неподвижного ЭПС через токоприемник, обеспечивающий скользящий (на магистральном, промышленном и большей части городского электротранспорта) или катящийся (на некоторых видах ЭПС городского электротранспорта) электрический контакт. Нарушение контакта при токосъеме приводит к возникновению бесконтактной электродуговой эрозии, следствием чего является интенсивный износ контактного провода и контактных вставок токоприемника. При перегрузке точек контакта током в режиме движения возникают контактная электровзрывная эрозия (искрение) и повышенный износ контактирующих элементов. Длительная перегрузка контакта рабочим током или током КЗ при стоянке ЭПС может привести к пережогу контактного провода. Во всех этих случаях необходимо ограничивать нижний предел контактного нажатия для заданных условий эксплуатации. Чрезмерное контактное нажатие, в т.ч. в результате аэродинамического воздействия на токоприемник, повышение динамической составляющей и вызванное ими увеличение вертикального отжатия провода, особенно у фиксаторов, на воздушных стрелках, в местах сопряжения анкерных участков и в зоне искусственных сооружений, может снизить надежность контактной сети и токоприемников, а также увеличить интенсивность изнашивания провода и контактных вставок. Следовательно, верхний предел контактного нажатия также необходимо нормировать. Оптимизацию режимов токосъема обеспечивают скоординированные требования к устройствам контактной сети и токоприемникам, что гарантирует высокую надежность их эксплуатации при минимальных приведенных расходах.
Качество токосъема может определяться разными показателями (числом и продолжительностью нарушений механического контакта на расчетном участке пути, степенью стабильности контактного нажатия, близкой к оптимальному значению, интенсивностью изнашивания контактных элементов и др.), которые в значительной мере зависят от конструктивного выполнения взаимодействующих систем – контактной сети и токоприемников, их статических, динамических, аэродинамических, демпфирующих и других характеристик. Несмотря на то, что процесс токосъема зависит от большого числа случайных факторов, результаты исследований и опыт эксплуатации позволяют выявить основополагающие принципы создания систем токосъема с требуемыми свойствами.

Жесткая поперечина

Жесткая поперечина – служит для подвешивания проводов контактной сети, расположенных над несколькими (2-8) путями. Жесткая поперечина выполняется в виде блочной металлической конструкции (ригеля), установленной на двух опорах (рис. 8.28). Такие поперечины используют также для разрекрываемого пролета. Ригель со стойками соединен шарнирно или жестко с помощью подкосов, позволяющих разгрузить его в середине пролета и уменьшить расход стали. При размещении на ригеле осветительных приборов на нем выполняют настил с перилами; предусматривают лестницу для подъема на опоры обслуживающего персонала. Устанавливают жесткие поперечины гл. обр. на станциях и раздельных пунктах.

Изоляторы

Изоляторы – устройства для изоляции проводов контактной сети, находящихся под напряжением. Различают изоляторы по направлению приложения нагрузок и месту установки – подвесные, натяжные, фиксаторные и консольные; по конструкции – тарельчатые и стержневые; по материалу – стеклянные, фарфоровые и полимерные; к изоляторам относят также изолирующие элементы
Подвесные изоляторы – фарфоровые и стеклянные тарельчатые – обычно соединяют в гирлянды по 2 на линиях постоянного тока и по 3-5 (в зависимости от загрязнения воздуха) на линиях переменного тока. Натяжные изоляторы устанавливают в анкеровках проводов, в несущих тросах над секционными изоляторами, в фиксирующих тросах гибких и жестких поперечин. Фиксаторные изоляторы (рис. 8.29 и 8.30) отличаются от всех других наличием внутренней резьбы в отверстии металлической шапки для закрепления трубы. На линиях переменного тока применяют обычно стержневые изоляторы, а постоянного – и тарельчатые. В последнем случае в основной стержень сочлененного фиксатора включают еще один тарельчатый изолятор с серьгой. Консольные фарфоровые стержневые изоляторы (рис. 8.31) устанавливают в подкосах и тягах изолированных консолей. Эти изоляторы должны иметь повышенную механическую прочность, т. к. работают на изгиб. В секционных разъединителях и роговых разрядниках применяют обычно фарфоровые стержневые, реже тарельчатые изоляторы. В секционных изоляторах на линиях постоянного тока используют полимерные изолирующие элементы в виде прямоугольных брусков из пресс-материала, а на линиях переменного тока -в виде цилиндрических стеклопластиковых стержней, на которые надеты электрозащитные чехлы из фторопластовых труб. Разработаны полимерные стержневые изоляторы с сердечниками из стеклопластика и ребрами из кремнийорганического эластомера. Их применяют в качестве подвесных, секционирующих и фиксаторных; они перспективны для установки в подкосах и тягах изолированных консолей, в тросах гибких поперечин и т. п. В зонах промышленного загрязнения воздуха и в некоторых искусственных сооружениях проводится периодическая очистка (обмывка) фарфоровых изоляторов с помощью специальных передвижных средств.

Контактная подвеска

Контактная подвеска – одна из ос новных частей контактной сети, представляет собой систему проводов, взаимное расположение которых, способ механического соединения, материал и сечение обеспечивают необходимое качество токосъема. Конструкция контактной подвески (КП) определяется экономической целесообразностью, эксплуатационными условиями (максимальной скоростью движения ЭПС, наибольшей силой тока, снимаемого токоприемниками), климатическими условиями. Необходимость обеспечения надежного токосъема при возрастающих скоростях движения и мощности ЭПС определила тенденции изменения конструкций подвесок: сначала простые, затем одинарные с простыми струнами и более сложные – рессорные одинарные, двойные и специальные, в которых для обеспечения требуемого эффекта, гл. обр. выравнивания вертикальной эластичности (или жесткости) подвески в пролете, используются пространственно-вантовые системы с дополнительным тросом или другие.
При скоростях движения до 50 км/ч удовлетворительное качество токосъема обеспечивает простая контактная подвеска, состоящая только из контактного провода, подвешенного к опорам А и В контактной сети (рис. 8.10,а) или поперечным тросам.

Качество токосъема во многом определяется стрелой провеса провода, зависящей от результирующей нагрузки на провод, которая складывается из собственного веса провода (при гололеде вместе со льдом) и ветровой нагрузки, а также от длины пролета и натяжения провода. На качество токосъема большое влияние оказывает угол а (чем он меньше, тем хуже качество токосъема), значительно изменяется контактное нажатие, появляются ударные нагрузки в опорной зоне, происходит усиленный износ контактного провода и токосъемных вставок токоприемника. Несколько улучшить токосъем в опорной зоне можно, применив подвешивание провода в двух точках (рис. 8.10,6), что при определенных условиях обеспечивает надежный токосъем при скоростях движения до 80 км/ч. Заметно улучшить токосъем при простой подвеске можно, только существенно уменьшив длину пролетов с целью снижения стрелы провеса, что в большинстве случаев неэкономично, либо применив специальные провода со значительным натяжением. В связи с этим применяют цепные подвески (рис. 8.11), в которых контактный провод подвешен к несущему тросу с помощью струн. Подвеска, состоящая из несущего троса и контактного провода, называется одинарной; при наличии вспомогательного провода между несущим тросом и контактным проводом – двойной. В цепной подвеске несущий трос и вспомогательный провод участвуют в передаче тягового тока, поэтому они соединены с контактным проводом электрическими соединителями либо токопроводящими струнами.

Основной механической характеристикой контактной подвески принято считать эластичность – отношение высоты подъема контактного провода к приложенной к нему и направленной вертикально вверх силе. Качество токосъема зависит от характера изменения эластичности в пролете: чем она стабильнее, тем лучше токосъем. В простых и обычных цепных подвесках эластичность в середине пролета выше, чем у опор. Выравнивание эластичности в пролете одинарной подвески достигается установкой рессорных тросов длиной 12-20 м, на которых крепят вертикальные струны, а также рациональным расположением обычных струн в средней части пролета. Более постоянной эластичностью обладают двойные подвески, но они дороже и сложнее. Для получения высокого показателя равномерности распределения эластичности в пролете используют различные способы ее повышения в зоне опорного узла (установка пружинных амортизаторов и упругих стержней, торсионный эффект от скручивания троса и др.). В любом случае при разработке подвесок необходимо учитывать их диссипативные характеристики, т. е. устойчивость к воздействию внешних механических нагрузок.
Контактная подвеска является колебательной системой, поэтому при взаимодействии с токоприемниками может находиться в состоянии резонанса, вызванного совпадением или кратностью частот ее собственных колебаний и вынужденных колебаний, определяемых скоростью проследования токоприемника по пролету с заданной длиной. При возникновении резонансных явлений возможно заметное ухудшение токосъема. Предельной для токосъема является скорость распространения механических волн вдоль подвески. В случае превышения этой скорости токоприемнику приходится взаимодействовать как бы с жесткой, недеформируемой системой. В зависимости от нормируемых удельных натяжений проводов подвески такая скорость может составлять 320-340 км/ч.
Простые и цепные подвески состоят из отдельных анкерных участков. Закрепления подвески “на концах анкерных участков могут быть жесткими или компенсированными. На магистральных ж. д. применяют в основном компенсированные и полукомпенсированные подвески. В полукомпенсированных подвесках компенсаторы имеются только в контактном проводе, в компенсированных – еще и в несущем тросе. При этом в случае изменения температуры проводов (вследствие прохождения по ним токов, изменения температуры окружающей среды) стрелы провеса несущего троса, а следовательно, и вертикальное положение контактных проводов остаются неизменными. В зависимости от характера изменения эластичности подвесок в пролете стрелу провеса контактного провода принимают в диапазоне от 0 до 70 мм. Вертикальную регулировку полукомпенсированных подвесок осуществляют так, чтобы оптимальная стрела провеса контактного провода соответствовала среднегодовой (для данного района) температуре окружающего воздуха.
Конструктивную высоту подвески – расстояние между несущим тросом и контактным проводом в точках подвеса – выбирают исходя из технико-экономических соображений, а именно – с учетом высоты опор, соблюдения действующих вертикальных габаритов приближения строений, изоляционных расстояний, особенно в зоне искусственных сооружений и др.; кроме того, должен быть обеспечен минимальный наклон струн при экстремальных значениях температуры окружающего воздуха, когда могут возникнуть заметные продольные перемещения контактного провода относительно несущего троса. Для компенсированных подвесок это возможно, если несущий трос и контактный провод выполнены из различных материалов.
Для увеличения срока службы контактных вставок токоприемников контактный провод располагают в плане с зигзагом. Возможны различные варианты подвески несущего троса: в тех же вертикальных плоскостях, что и контактный провод (вертикальная подвеска), по оси пути (полукосая подвеска), с зигзагами, противоположными зигзагам контактного провода (косая подвеска). Вертикальная подвеска обладает меньшей ветроустойчивостью, косая – наибольшей, но она наиболее сложна при монтаже и обслуживании. На прямых участках пути в основном применяется полукосая подвеска, на криволинейных – вертикальная. На участках с особенно сильными ветровыми нагрузками широко используют ромбовидную подвеску, в которой два контактных провода, подвешенных к общему несущему тросу, располагаются у опор с противоположными зигзагами. В средних частях пролетов провода притянуты один к другому жесткими планками. В некоторых подвесках поперечная устойчивость обеспечивается применением двух несущих тросов, образующих в горизонтальной плоскости своего рода вантовую систему.
За рубежом в основном применяют цепные одинарные подвески, в т. ч. на скоростных участках – с рессорными проводами, простыми разнесенными опорными струнами, а также с несущими тросами и контактными проводами, имеющими повышенные натяжения.

Контактный провод

Контактный провод – наиболее ответственный элемент контактной подвески, непосредственно осуществляющий контакт с токоприемниками ЭПС в процессе токосъема. Как правило, используют один или два контактных провода. Два провода обычно применяют при съеме токов более 1000 А. На отечественных ж. д. применяют контактные провода с площадью сечения 75, 100, 120, реже 150 мм2; за рубежом – от 65 до 194 мм2. Форма сечения провода претерпевала некоторые изменения; в нач. 20 в. профиль сечения приобрел форму с двумя продольными пазами в верхней части – головке, служащими для закрепления на проводе арматуры контактной сети. В отечественной практике размеры головки (рис. 8.12) одинаковы для различных площадей сечения; в других странах размеры головки зависят от площади сечения. В России контактный провод маркируют буквами и цифрами, указывающими материал, профиль и площадь сечения в мм2 (например, МФ-150 – медный фасонный, площадь сечения 150 мм2).

Широкое распространение в последние годы получили низколегированные медные провода с присадками серебра, олова, которые повышают износо- и термостойкость провода. Лучшие показатели по износостойкости (в 2-2,5 раза выше, чем у медного провода) имеют бронзовые медно-кадмиевые провода, однако они дороже медных, а их электрическое сопротивление выше. Целесообразность применения того или иного провода определяется технико-экономическим расчетом с учетом конкретных условий эксплуатации, в частности при решении вопросов обеспечения токосъема на высокоскоростных магистралях. Определенный интерес представляет биметаллический провод (рис. 8.13), подвешиваемый в основном на приемо-отправочных путях станций, а также комбинированный сталеалюминиевый провод (контактная часть – стальная, рис. 8.14).

В процессе эксплуатации происходит изнашивание контактных проводов при токосъеме. Различают электрическую и механическую составляющие износа. Для предотвращения обрыва проводов из-за возрастания растягивающих напряжений нормируется максимальное значение износа (например, для провода с площадью сечения 100 мм допускаемый износ составляет 35 мм2); по мере увеличения износа провода периодически уменьшают его натяжение.
При эксплуатации разрыв контактного провода может произойти в результате термического воздействия электрического тока (дуги) в зоне взаимодействия с другим устройством, т. е. в результате пережога провода. Наиболее часто пережоги контактного провода происходят в следующих случаях: над токоприемниками неподвижного ЭПС вследствие КЗ в его высоковольтных цепях; при подъеме или опускании токоприемника из-за протекания тока нагрузки или КЗ через электрическую дугу; при увеличении контактного сопротивления между проводом и контактными вставками токоприемника; наличии гололеда; замыкании полозом токоприемника раз-нопотеициальных ветвей изолирующего сопряжения анкерных участков и др.
Основными мерами предотвращения пережогов провода являются: повышение чувствительности и быстродействия защиты от токов КЗ; применение на ЭПС блокировки, препятствующей подъему токоприемника под нагрузкой и принудительно отключающей ее при опускании; оборудование изолирующих сопряжений анкерных участков защитными устройствами, способствующими гашению дуги в зоне возможного ее возникновения; своевременные меры, предотвращающие гололедные отложения на проводах, и др.

Несущий трос

Несущий трос – провод цепной подвески, прикрепленный к поддерживающим устройствам контактной сети. К несущему тросу с помощью струн подвешивается контактный провод – непосредственно или через вспомогательный трос.
На отечественных ж. д. на главных путях линий, электрифицированных на постоянном токе, в качестве несущего троса применяют в основном медный провод с площадью сечения 120 мм2, а на боковых путях станций -сталемедный (70 и 95 мм2). За рубежом на линиях переменного тока используют также бронзовые и стальные тросы сечением от 50 до 210 мм2. Натяжение троса в полукомпенсированной контактной подвеске изменяется в зависимости от температуры окружающего воздуха в пределах от 9 до 20 кН, в компенсированной подвеске в зависимости от марки провода – в пределах 10-30 кН.

Струна

Струна – элемент цепной контактной подвески, с помощью которого один из ее проводов (как правило, контактный) подвешивается к другому – несущему тросу.
По конструкции различают: звеньевые струны, составленные из двух и более шар-нирно связанных звеньев жесткой проволоки; гибкие струны из гибкого провода или капронового каната; жесткие – в виде распорок между проводами, применяемые значительно реже; петлевые – из проволоки или металлической полосы, свободно подвешенной на верхнем проводе и жестко или шарнирно закрепленной в струновых зажимах нижнего (обычно контактного); скользящие струны, закрепленные на одном из проводов и скользящие вдоль другого.
На отечественных ж. д. наибольшее распространение получили звеньевые струны из биметаллической сталемедной проволоки диаметром 4 мм. Недостатком их является электрический и механический износ в сочленениях отдельных звеньев. В расчетах эти струны не рассматриваются как токопроводящие. Такого недостатка лишены гибкие струны из медного или бронзового многожильного провода, жестко прикрепленные к струновым зажимам и выполняющие роль электрических соединителей, распределенных вдоль контактной подвески и не образующих существенных сосредоточенных масс на контактном проводе, что характерно для типовых поперечных электрических соединителей, используемых при звеньевых и других непроводящих ток струнах. Иногда применяют непроводящие струны контактной подвески из капронового каната, для крепления которых требуются поперечные электрические соединители.
Скользящие струны, способные перемещаться вдоль одного из проводов, используют в полукомпенсированных цепных контактных подвесках с малой конструктивной высотой, при установке секционных изоляторов, в местах анкеровки несущего троса на искусственных сооружениях с ограниченными вертикальными габаритами и в других особых условиях.
Жесткие струны обычно устанавливают только на воздушных стрелках контактной сети, где они выполняют роль ограничителя подъема контактного провода одной подвески относительно провода другой.

Усиливающий провод

Усиливающий провод – провод, электрически соединенный с контактной подвеской, служащий для снижения общего электрического сопротивления контактной сети. Как правило, усиливающий провод подвешивают на кронштейнах с полевой стороны опоры, реже – над опорами или на консолях вблизи несущего троса. Усиливающий провод применяют на участках постоянного и переменного тока. Снижение индуктивного сопротивления контактной сети переменного тока зависит не только от характеристик самого провода, но и от его размещения относительно проводов контактной подвески.
Применение усиливающего провода предусматривается на стадии проектирования; как правило, используется один или несколько многопроволочных проводов типа А-185.

Электрический соединитель

Электрический соединитель – отрезок провода с токопроводящей арматурой, предназначенный для электрического соединения проводов контактной сети. Различают поперечные, продольные и обводные соединители. Их выполняют из неизолированных проводов так, чтобы они не препятствовали продольным перемещениям проводов контактных подвесок.
Поперечные соединители устанавливают для параллельного соединения всех проводов контактной сети одного и того же пути (включая усиливающие) и на станциях для контактных подвесок нескольких параллельных путей, входящих в одну секцию. Поперечные соединители монтируют вдоль пути на расстояниях, зависящих от рода тока и доли сечения контактных проводов вобщем сечении проводов контактной сети, а также от режимов работы ЭПС на конкретных тяговых плечах. Кроме того, на станциях соединители размещают в местах трогания и разгона ЭПС.
Продольные соединители устанавливают на воздушных стрелках между всеми проводами контактных подвесок, образующих эту стрелку, в местах сопряжений анкерных участков – с двух сторон при неизолирующих сопряжениях и с одной стороны -при изолирующих сопряжениях и в других местах.
Обводные соединители применяют в тех случаях, когда требуется восполнить прерванное или уменьшившееся сечение контактной подвески из-за наличия промежуточных анкеровок усиливающих проводов или при включении в несущий трос изоляторов для прохода через искусственное сооружение.

Арматура контактной сети

Арматура контактной сети – зажимы и детали для соединения проводов контактной подвески между собой, с поддерживающими устройствами и опорами. Арматура (рис. 8.15) делится на натяжную (стыковые, концевые зажимы и др.), подвесную (струновые зажимы, седла и др.), фиксирующую (фиксирующие зажимы, держатели, ушки и др.), токопроводящую, механически мало нагруженную (зажимы питающие, соединительные и переходные – от медных к алюминиевым проводам). Изделия, входящие в состав арматуры, в соответствии с их назначением и технологией производства (литье, холодная и горячая штамповка, прессование и др.) выполняют из ковкого чугуна, стали, медных и алюминиевых сплавов, пластмасс. Технические параметры арматуры регламентируются нормативными документами.