Долговременное хранение информации. Внешняя память используется для долговременного хранения информации твёрдотельные. Классификация устройств долговременного хранения информации

13.04.2020 Программы

ВНЕШНЯЯ ПАМЯТЬ Используется для долговременного хранения информации Твёрдотельные носители информации Накопители на жестких магнитных дисках (НЖМД, HDD) АППАРАТНАЯ РЕАЛИЗАЦИЯ Накопители на магнитной ленте – «Стримеры» Накопители на лазерных дисках (CD, Compact Disk и др.) Носитель информации – среда для записи/считывания и хранения информации.

Вариант классификации носителей информации, используемых в компьютерной технике Носители информации для ЭВМ Ленточные носители магнитные Дисковые носители оптические Флэш-носители магнитооптические

Основным видом внешней памяти является магнитная память Магнитная запись В конце 1898 года датчанин Вальдемар Поулсен (Valdemar Poulsen) предложил устройство для магнитной записи звука на стальную проволоку. Спустя 30 лет немецкий инженер Фриц Плеймер (Fritz Pfleumer) представил звукозаписывающее устройство с носителем в виде бумажной ленты, на которую наносилось тонкое стальное покрытие. В 1932 году немецкая компания AEG продемонстрировала первый звукозаписывающий аппарат, который получил название «Magnetophon» . Магнитная лента обладает основным недостатком – способностью размагничиваться при длительном хранении и имеет неравномерную частотную характеристику (различная чувствительность к записи на разных частотах). Кроме того, любая магнитная лента обладает собственными шумами (физические свойства магнитного слоя и способы записи-воспроизведения звука).

Принцип магнитной записи заключается в воздействии электромагнитного поля на ферромагнитный материал магнитной ленты, осуществляемом при записи, а также перезаписи аналогового сигнала. Магнитное поле в процессе записи изменяется в соответствии с изменениями электрических сигналов. Электрические колебания от источника звука подаются на записывающую головку и возбуждают в ней магнитное поле звуковой частоты (20 Гц – 20 к. Гц). Под действием этого поля происходит намагничивание отдельных участков магнитной ленты, равномерно перемещаемой вдоль головок записи, стирания и воспроизведения (Рис.).

Для записи-воспроизведения, а также использования различных данных на машиночитаемые носители данных используется преобразование аналогового (звукового и видео) сигнала в цифровую форму. Такая технология получила название оцифровки информации. Принцип оцифровки (кодирования) звука заключается в преобразовании непрерывного разного по величине амплитудночастотного звукового и видео сигналов в закодированную последовательность чисел, представляющих дискретные значения амплитуд этого сигнала, взятые через определенный промежуток времени. Для этого необходимо измерять амплитуду сигнала через определённые промежутки времени и на каждом временнóм отрезке определять среднюю амплитуду сигнала. Согласно теореме Шенона (Котельникова), этот промежуток времени (частота) должен быть не меньше удвоенной максимальной частоты передаваемого звукового сигнала (Рис.).

Эта частота называется частотой дискретизации. Дискретизация – процесс взятия отсчётов непрерывного во времени сигнала в равноотстоящих друг от друга по времени точках, составляющих интервал дискретизации. В процессе дискретизации измеряется и запоминается уровень аналогового сигнала. Амплитуда Частота (Гц) Рис. 13. Преобразование аналогового сигнала в цифровой. Чем реже (меньше) промежутки времени, тем качество закодированного сигнала выше.

Стримеры Ленточные носители используются для резервного копирования с целью обеспечения сохранности данных. В качестве таких устройств применяется стример (Рис.), а – носителя информации в них используются магнитные ленты в кассетах и ленточных картриджах. Обычно на магнитную ленту запись осуществляется побайтно, при этом домен соответствует двоичной единице. Если считывающее устройство его не обнаруживает, то полученное значение соответствует нулю.

Система записи на магнитные диски и дискеты несколько похожа на систему записи на пластинки. В отличие от последних запись осуществляется не по спирали, а на концентрические окружности – дорожки («траки» - traks), расположенные на двух сторонах диска и образующие как бы цилиндры. Окружности, в свою очередь, делятся на сектора (Рис.). Каждый сектор дискеты, не зависимо от размеров дорожки, имеет одинаковый размер, равный 512 байт, что достигается различной плотностью записи: меньшей на периферии и большей ближе к центру дискеты.

Магнитооптический носитель информации внешние высоконадёжные устройства переноса и хранения информации. Магнитооптические диски (МО) появились в 1988 году. МО диск заключён в пластиковый конверт (картридж) и является устройством произвольного доступа. Он совмещает в себе магнитный и оптический принципы хранения информации и представляет поликарбонатную подложку (слой) толщиной 1, 2 мм, на которую нанесено несколько тонкоплёночных магнитных слоёв (Рис.). Запись лазером с температурой примерно в 200 о. С на магнитный слой происходит одновременно с изменением магнитного поля. Рис. Состав МО диска.

Запись данных осуществляется лазером в магнитном слое. Под воздействием температуры в месте нагрева в магнитном слое уменьшается сопротивляемость изменению полярности, и магнитное поле изменяет полярность в нагретой точке на соответствующую двоичной единице. По окончании нагрева сопротивляемость увеличивается, но установленная полярность сохраняется. Стирание создаёт в магнитном поле одинаковую полярность, соответствующую двоичным нулям. При этом лазерный луч последовательно нагревает стираемый участок. Считывание записанных данных в слое производится лазером с меньшей интенсивностью, не приводящей к нагреву считываемого участка. При этом, в отличие от компакт-дисков, поверхность диска не деформируется.

Компактный оптический диск (CD) – это пластмассовый диск со специальным покрытием, на котором в цифровой форме размещается записанная информация. Благодаря изменению скорости его вращения, дорожка относительно считывающего луча лазера движется с постоянной линейной скоростью. У центра диска скорость выше, а у края – медленнее (1, 2– 1, 4 м/сек). В CD используют лазер с длиной волны излучения = 0, 78 мкм. «Прожигаемая» лазером цифровая информация сохраняется в виде «пит» – чёрточек шириной 0, 6– 0, 8 мкм и длиной 0, 9– 3, 3 мкм. Существует три основных вида CD: ● CD-ROM, на которые запись, как правило, осуществляется фабрично методом штамповки с матрицы; ● CD-R, используемые для одно или несколькократной лазерной записи сессиями; ● CD-RW, предназначенные для многократных циклов записистирания.

В CD-R (Compact Disk Recordable) поверх отражающего слоя из золота, серебра или алюминия, расположен органический слой специального легкоплавкого пластика. Ввиду этого такой диск чувствителен к нагреванию и воздействию прямых солнечных лучей. В CD-RW в качестве промежуточного слоя также используется органический состав, но он способен при сильном нагреве переходить из кристаллического (прозрачного для лазера) состояния в аморфное. Слабый нагрев возвращает его обратно в кристаллическое состояние. Таким образом осуществляется перезапись.

DVD В начале 1997 года появился стандарт компакт-дисков под названием DVD (Digital Video Disc), предназначенный в основном для записи высококачественных видеопрограмм. В дальнейшем аббревиатура DVD получила следующее значение – Digital Versatile Disc (универсальный цифровой диск), как более полно отвечающая возможностям этих дисков для записи звуковой, видео, текстовой информации, программного обеспечения ПК и др. DVD обеспечивает более высокое качество изображения, чем CD. В них используется лазер с более короткой длиной волны излучения = 0, 635– 0, 66 мкм. Это позволяет повысить плотность записи, т. е. уменьшить геометрические размеры пит до 0, 15 мкм и шаг дорожки до 0, 74 мкм.

Плотность записи оптических дисков определяется длиной волны лазера, то есть возможностью сфокусировать на поверхности диска луч с пятном, диаметр которого равен длине волны. Вслед за DVD в конце 2001 года появились устройства Blu-Ray, позволяющие работать в синей области спектра с длиной волны = 450– 400 нм.

Для увеличения ёмкости используют и флуоресцентные диски - FMD (Fluorescent Multilayer Disk). Принцип их действия заключающийся в изменении физических свойств (появление флуоресцентного свечения) некоторых химических веществ под воздействием лазерного луча (Рис.). Здесь вместо технологий CD и DVD, использующих отражённый сигнал, под воздействием лазера свет излучается непосредственноинформационнымслоем. Такие диски изготавливаются из прозрачного фотохрома. Под воздействием лазерного излучения в них происходит химическая реакция, и отдельные участки информационного слоя («питы») заполняются флуоресцентным материалом. Этот метод может считаться методом объёмной записи данных. В бόльшей степени такая запись возможна при использовании трёхмерной голографии, позволяющее ныне в кристалле размером с сахарный кубик, разместить до 1 Тб данных.

Используется два основных типа Flash-памяти: NAND и NOR (логическая функция ИЛИ-НЕ) и NAND (логическая функция И-НЕ). Структура NOR состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает произвольный доступ к данным и побайтную запись информации. В основе структуры NAND лежит принцип последовательного соединения элементарных ячеек, образующих группы (по 16 ячеек в одной группе), которые объединяются в страницы, а страницы в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение происходит к блокам или к группам блоков.

Микросхемы NOR хорошо работают совместно оперативной памятью RAM, поэтому чаще используются для BIOS. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее, чем в памяти NOR. Поскольку 16 прилегающих друг к другу ячеек памяти NAND соединены последовательно, без контактных промежутков, достигается высокая плотность размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. С середины 1990 -х гг. появились микросхемы NAND в виде твердотельных дисков (Solid State Disk, SSD). Для сравнения времени доступа у SDRAM оно составляет 10– 50 мкс, у флэш-памяти – 50– 100 мкс, а у жестких дисков – 5000 – 10000 мкс.

Твердотельный жесткий диск Samsung. Скорость чтения с такого диска составляет 57 Мбайт/с, а скорость записи на него – 32 Мбайт/с. Энергопотребление SSD составляет менее 5% от показателей традиционных жестких дисков, увеличивая более чем на 10% время автономной работы портативных ПК. SSD обеспечивают сверхвысокую надежность хранения данных и отлично зарекомендовали себя в условиях экстремальных температур и влажности. Петербургская фирма “Просто. Софт” предложила драйвер Flash. RAID для объединения двух флэш-накопителей в RAID-массив.

Flash-память – переносной энергонезависимый накопитель. Обычно используются следующие стандарты флэш-памяти: Compact. Flash, Smart. Media, Memory Stick, Floppy Disks, Multi. Media Cards и др. Они могут использоваться вместо дискет, лазерных и магнитооптических компактных, небольших жёстких дисков. Современные сменные устройства флэш-памяти обеспечивают высокую скорость обмена данными (Ultra High Speed) – более 16, 5 Мбит/с. Для подключения к USB-порту компьютера используются специальные USB Flash Drive (Рис.), представляющие собой мобильные малогабаритные устройства хранения данных, не имеющие подвижных и вращающихся механических частей.

Голография – фотографический метод записи, воспроизведения и преобразования волновых полей. Впервые был предложен в 1947 году венгерским физиком Деннисом Габором. В 1960 -е годы, с появлением лазера представилась возможность точно записывать и воспроизводить объёмные изображения в кристалле ниобата лития. С 1980 -х годов, с появлением компакт-дисков, голографические устройства хранения информации на основе лазерной оптики стали одной из технологий внешней памяти. Голографическая память представляет весь объём запоминающей среды носителя, при этом элементы данных накапливаются и считываются параллельно.

Современные голографические устройства хранения получили название HDSS (holographic data storage system). Они содержат: лазер, расщепитель луча для разделения лазерного пучка, зеркала для направления лазерных лучей, жидкокристаллическую панель, используемую как пространственный модулятор света, линзы для фокусировки лазерных лучей, кристалл ниобата лития или фотополимер как запоминающее устройство, фотодетектор для считывания информации (Рис.).

С появлением компьютеров очень остро встал вопрос хранения информации, которая изначально подавалась в цифровом виде. И сейчас эта проблема весьма актуальна, ведь те же фотографии или видео хочется сберечь на долгую память. Именно поэтому изначально придется найти ответ на вопрос о том, для долговременного хранения информации служат какие устройства и носители. Также следует в полной мере оценить все их преимущества и недостатки.

Понятие информации и способы ее хранения

В наше время на компьютерах можно встретить несколько основных типов информационных данных. Наиболее распространенными формами являются текстовые, графические, аудио, видео, математические и другие форматы.

В самом простом варианте для хранения информации служат жесткие диски компьютеров, на которые пользователь сохраняет файл изначально. Но это только одна сторона медали, ведь для того, чтобы эту информацию просмотреть (извлечь), нужна как минимум операционная система и соответствующие программы, которые по большому счету тоже представляют собой информационные данные.

Интересно, что в школах на уроках информатики при выборе правильного варианта ответа на такие вопросы часто встречается утверждение, что, мол, для долговременного хранения информации служит оперативная память. И школьники, не знакомые со спецификой и принципами ее работы, считают это верным ответом.

К сожалению, они ошибаются, поскольку в ОЗУ хранится только информация о запущенных в данный момент процессах, а при их завершении или перезагрузке системы оперативная память полностью очищается. Это похоже на принцип действия некогда популярных детских игрушек для рисования, когда на экране сначала можно было что-то нарисовать, а потом встряхнуть игрушку, и рисунок исчезал, или когда учитель стирает с классной доски текст, написанный мелом.

Как информация сохранялась раньше

Самый первый метод сохранения информации в виде наскальных рисунков (кстати, графика) известен еще с незапамятных времен.

Намного позже с появлением речи сохранение информации стало представлять собой процесс, так сказать, передачи из уст в уста (мифы, легенды, былины). Письменность привела к тому, что стали появляться книги. Не забывались и картины или рисунки. С появлением технологий фотографии, записи звука и видео, на информационном поле появились соответствующие носители. Но все это оказывалось недолговечным.

Устройство для долговременного хранения информации: основные требования

Что же касается компьютерных систем, следует четко понимать, каким именно требованиям должны соответствовать современные носители, чтобы информация хранилась на них максимально долго.

Самое главное требование - долговечность и устойчивость к износу и физическим или другим повреждениям. И применительно к любому типу носителей о временных промежутках можно говорить весьма относительно, ведь, как известно, «ничто не вечно под Луной».

Для долговременного хранения информации служат какие носители

Теперь перейдем непосредственно к устройствам, на которых данные любого типа можно хранить, если не вечно, то по крайней мере достаточно долго. Итак, для долговременного хранения информации служат носители каких типов?

Среди наиболее часто используемых применительно к компьютерной технике выделяют следующие:

  • внутренние и съемные жесткие и ZIP-диски компьютеров;
  • оптические CD-диски, DVD- и Blu-ray-носители;
  • флэш-память любого типа;
  • дискеты (сейчас используются крайне редко).

Преимущества и недостатки носителей

Как видно из приведенного перечня, только встраиваемые в компьютеры винчестеры относятся к внутренним устройствам хранения данных. Все остальные носители являются внешними.

Но все они в той или иной мере подвержены старению или внешним воздействиям. В этом смысле дискеты или те же CD-диски или носители другого формата являются самыми небезопасными, хотя оптические носители в этом отношении выглядят более износоустойчивыми. Но сколько они могут прослужить? 5-10 лет? А ведь если информацию, на них хранящуюся, просматривать очень часто, срок службы сокращается.

Флэш-накопители и винчестеры обладают более долгими сроками эксплуатации, но и они не застрахованы от износа, повреждений и старения.

Винчестеры начинают «сыпаться» (это естественный процесс), флэшки могут подвергаться воздействию того же солнечного света, влаги или даже удалять данные при неправильном извлечении или программных сбоях. Кроме того, есть еще множество дополнительных факторов, которые могут привести к неработоспособности устройств.

Тем не менее, говоря о том, что для долговременного хранения информации служат устройства, приведенные в списке выше, стоит учитывать, что такая классификация приводится исключительно для нынешнего положения дел в компьютерном мире. Кто знает, может, даже в уже обозримом будущем будут изобретены совершенно новые носители, использующие другие технологии, ведь как утверждается, создание квантовых компьютеров уже не за горами.

Введение

Современное общество характеризуется интенсивным развитием технических и программных средств. На основе своевременного пополнения, накопления, переработки информационного ресурса возможно рациональное управление и принятие верных решений. Особенно важным это является для сферы экономики. Постоянный рост информационных потоков предъявляет повышенные требования к применению устройств хранения данных. В этой связи рассмотрение вопроса, касающегося средств долговременного хранения информации, представляется весьма актуальным.

В данной работе внимание уделяется отдельному элементу архитектуры персонального компьютера, известному как «внешняя память». Изложение материала начинается с формирования общего представления о предмете изучения. Далее следует освещение важнейших составных частей выбранной темы. Каждый раздел последовательно раскрывает особенности указанных устройств, в частности, сущность средства, его функции, технические характеристики, сфера и условия применения.

Практическая часть представленной работы посвящена решению экономической задачи. По приведенным данным производился расчет общей суммы возврата по кредитному договору. Аналогичные подсчеты могут применяться в ряде экономических и финансово-кредитных организаций. Вычисления сопровождаются комментариями к алгоритму выполнения задания, построением соответствующих таблиц и графического элемента.

Работа выполнялась на ПК IBM стандартной конфигурации, включающей системный блок, монитор, клавиатуру, мышь со следующими характеристиками: 64-разрядный микропроцессор Celeron 2,4 ГГц, ОЗУ 1024 Мб, жесткий диск Samsung с объемом 80 Гб, дисковод 3,5" Samsung, CD-RW LG 52x32x52, монитор Acer 17" с разрешением 1280х1024. Работа велась в ОС Windows XP с использованием текстового редактора Microsoft Office Word 2003, табличного процессора Microsoft Office Excel 2003, входящих в интегрированный ППП Microsoft Office 2003.

1. Устройства долговременного хранения данных на ПК

Введение 4

1.1. Классификация устройств внешней памяти ПК 5

1.2. Описания конкретных видов 6

    Дискета 6

    Компакт-диск 7

    Жесткий диск 12

    Flash-память 18

Заключение 20

Введение

Персональный компьютер предназначен для автоматизации процесса обработки информации. При этом данные в ЭВМ заносятся с помощью устройств ввода и подлежат дальнейшей обработке. Однако довольно часто возникает необходимость хранения и переноса больших объемов информации. Постоянное хранение таких информационных массивов в памяти компьютера представляется нерациональным. При учете таких факторов широкое применение находят устройства долговременного хранения данных, которые еще называют внешней памятью.

Внешняя (долговременная) память (ВЗУ – внешнее запоминающее устройство) предназначена для длительного хранения про-грамм и данных, не используемых в данный момент в оперативной памяти ПК, и является энергонезависимой, т.е. целостность ее содержимого не зависит от того, включен или выключен компьютер. В частности, во внешней памяти хранится все программное обеспечение ПК. В отличие от оперативной памяти внешняя память не имеет прямой связи с процессором. Носители внешней памяти, кроме того, обеспечивают транспортировку данных в тех случаях, когда компьютеры не объединены в сети (локальные или глобальные).

      Классификация устройств внешней памяти ПК

Устройства внешней памяти или, иначе, внешние запоминающие устройства весьма разнообразны. Их можно классифицировать по целому ряду признаков: по виду носи-теля, типу конструкции, по принципу записи и считывания информации, методу доступа и т.д.

Один из возможных вариантов классификации ВЗУ представлен ниже на рис. 2.

Рис. 2. Классификация ВЗУ

Для работы с внешней памятью необходимо наличие накопителя (устройства, обеспечивающего запись и (или) считывание информации) и устройства хранения - носителя.

В зависимости от типа носителя все ВЗУ можно подразделить на накопители на маг-нитной ленте и дисковые накопители.

Накопители на магнитной ленте, в свою очередь, бывают двух видов: накопители на бобинной магнитной ленте (НБМЛ) и накопители на кассетной магнитной ленте (НКМЛ - стримеры). В ПК используются только стримеры.

Накопители на дисках - устройства для записи / чтения с магнитных (оптических) носителей. Назначение этих накопителей: хранение больших объемов информации, запись и выдача хранимой информации по запросу в оперативное запоминающее устройство. Диски относятся к машинным носителям информации с прямым доступом. Понятие прямой доступ означает, что ПК может "обратиться" к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни находилась головка записи/чтения накопителя.

Таким образом, к основным устройствам длительного хранения данных можно отнести:

    накопители на гибких магнитных дисках (НГМД);

    накопители на жестких магнитных дисках (НЖМД);

    накопители на оптических дисках (CD, CD-RW);

    накопители на записывающих магнитооптических дисках;

    накопители на магнитной ленте (стримеры) и др.

1.2 Описание конкретных видов:

Дискета

Дискета - портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х - начале 2000-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД - «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД - «накопитель на гибких магнитных дисках», жаргонный вариант - флоповод, флопик, флопарь от английского floppy-disk).

Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферримагнитным слоем , отсюда английское название «floppy disk» («гибкий диск»). Эта пластинка помещается в пластмассовый корпус, защищающий магнитный слой от физических повреждений . Оболочка бывает гибкой или прочной. Запись и считывание дискет осуществляется с помощью специального устройства - дисковода (флоппи-дисковода).

Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения.

В настоящее время дискеты практически повсеместно вытеснены более емкими и обладающими гораздо меньшей удельной стоимостью видами накопителей. К таковым относятся, прежде всего, накопители на флэш-памяти, записываемые CD и DVD-диски (в особенности DVD-RAM).

Компакт-диск

(«CD», «Shape CD», «CD-ROM», «КД ПЗУ») - оптический носитель информации в виде диска с отверстием в центре, информация с которого считывается с помощью лазера. Изначально компакт-диск был создан для цифрового хранения аудио (т. н. Audio-CD), однако в настоящее время широко используется как устройство хранения данных широкого назначения (т. н. CD-ROM). Аббревиатура «CD-ROM» означает «Compact Disc Read Only Memory» что в переводе обозначает компакт-диск с возможностью чтения. «КД ПЗУ» означает «Компакт-диск, постоянное запоминающее устройство». CD-ROM’ом часто ошибочно называют CD-привод для чтения компакт-дисков. Компакт-диск был создан в 1979 году компаниями Philips и Sony.

Компакт-диски изготавливаются из поликарбоната толщиной 1,2 мм, покрытого тончайшим слоем алюминия (ранее использовалось золото) с защитным слоем из лака, на котором обычно наносится графическое представление содержания диска. Поэтому, вопреки распространённому мнению, компакт-диск, никогда не следует класть вверх ногами (этикеткой вниз), так как отражающий алюминиевый слой, на котором и хранятся данные, снизу защищён, как было сказано выше, 1,2-миллиметровым слоем поликарбоната, а сверху - лишь тонким слоем лака. Кроме того, на отражающей стороне имеется кольцевой выступ высотой 0,5 мм, позволяющий диску, положенному на ровную поверхность, не касаться этой поверхности. В центре диска расположено отверстие диаметром 15 мм (при желании диск можно переносить, надев на палец, вообще не прикасаясь к его поверхности).

Информация на диске записывается в виде спиральной дорожки так называемых питов (углублений), выдавленных на алюминиевом слое (в отличие от технологии записи CD-ROM где информация записывается цилиндрически). Каждый пит, имеет примерно 125 нм в глубину и 500 нм в ширину. Длина пита, варьируется от 850 нм до 3,5 мкм. Расстояние между соседними дорожками спирали - 1,5 мкм. Данные с диска читаются при помощи лазерного луча с длиной волны 780 нм, который просвечивает поликарбонатный слой, отражается от алюминиевого и считывается фотодиодом. Луч лазера образует на отражающем слое пятно диаметром примерно 1,5 мкм. Так как диск читается с нижней стороны, каждый пит, выглядит для лазера как возвышение. Места, где такие возвышения отсутствуют, называются площадками.

Чтобы вам было легче представить отношение размеров диска, и пита: если компакт-диск был бы величиной со стадион, пит был бы размером примерно с песчинку.

Свет от лазера, попадающий на площадку, отражается и улавливается фотоприёмником. Если же свет попадает на возвышение, он испытывает интерференцию со светом, отражённым от площадки вокруг возвышения и не отражается. Так происходит потому, что высота каждого возвышения равняется четверти длины волны света лазера, что приводит к разнице в фазах в половину длины волны между светом, отражённым от площадки и светом, отражённым от возвышения.

Компакт-диски бывают штампованные на заводе (CD-ROM), CD-R для однократной записи, CD-RW для многократной записи. Диски последних двух типов предназначены для записи в домашних условиях на специальных пишущих приводах. В некоторых CD-плеерах и музыкальных центрах такие диски могут не читаться (в последнее время все производители бытовых музыкальных центров и CD-плееров включают в свои устройства поддержку чтения CD-R/RW).

Скорость чтения/записи CD указывается кратной 150 KБ/с (то есть 153 600 байт/с). Например, 48-скоростной привод обеспечивает максимальную скорость чтения (или записи) CD дисков, равную 48 * 150 = 7200 KБ/с (7,03 MБ/с).

Вес диска без коробки составляет ~15,7 гр. Вес диска в обычной (не «слим») коробке равен ~74 гр.

Shape CD (фигурный компакт-диск) - оптический носитель цифровой информации типа CD-ROM, но не строго круглой формы, а с очертанием внешнего контура в форме разнообразных объектов, таких как портреты, машины, самолёты, диснеевские персонажи, сердечки, звёздочки, овалы, в форме кредитных карточек и т. д.

Существуют и диски, предназначенные для записи в домашних условиях: CD-R (Compact Disc Recordable) для однократной записи и CD-RW (Compact Disc ReWritable) для многократной. В таких дисках отражающая способность питов и промежутков между ними должны имитироваться другим способом. Это достигается добавлением красителя между золотой (алюминиевой) поверхностью и слоем поликарбоната. В изначальном состоянии уровень красителя прозрачен и позволяет лучу лазера свободно проходить через него и отражаться от золотого(алюминиевого) покрытия. Во время записи лазер переходит в режим повышенной мощности(8-16мВт). Когда лазер попадает на краситель, он нагревает его, разрушая химические связи, и образует темные, непрозрачные пятна. При чтении лучом лазера с мощностью 0,5 мВт фотодетектор замечает разницу между прожженными пятнами и нетронутыми областями. Это различие интерпретируется так же, как и разница между выемками и ровными поверхностями на обычных компакт дисках.

Мы поделимся опытом в работе с разными накопителями и расскажем, какие из них надежные, а на каких лучше не хранить ничего ценного. Вы узнаете, как сохранить данные в целости и сохранности, хотя бы на столетие.

Общие правила хранения ценной информации

Есть несколько правил, работающие в отношении любой информации, которую важно сохранить в целости и сохранности. Если не хотите потерять дорогие сердцу фотографии, важные документы или ценные работы, то:

  • Создайте как можно больше копий. Таким образом вы подстрахуете себя несколькими запасными копиями и в случае потери одной копии у вас еще останется парочка других экземпляров.
  • Храните данные только в самых распространенных и общепринятых форматах. Не стоит прибегать к экзотике и применять малоизвестные типы файлов, ведь в один прекрасный день, просто не сможете найти программу для его открытия (к примеру тексты лучше хранить в ODF или TXT, а не DOCX и DOC).
  • Сделав несколько копий, разместите их на разных носителях, не стоит хранить все на одном и том же жестком диске.
  • Не используйте сжатие или шифрование данных. Если такой файл даже немного повредится, уже никогда не выйдет получить к нему доступ и открыть содержимое. Для длительного хранения медиа файлов применяйте несжатые форматы. Для аудио это WAV, для изображений подходят RAW, TIFF и BMP, видео файлы – DV. Правда тут понадобится носитель достаточно большой емкости, чтобы вместить такие файлы.
  • Постоянно проверяйте целостность своей информации и создавайте дополнительные копии новыми способами и на более новых устройствах.

Такие простые правила помогут вам на долгие годы сберечь важные документы, дорогие фото и видео записи. А сейчас рассмотрим где дольше всего информация будет в целости и сохранности.

Про популярные носители и их надежность

К самым распространенным и популярным способам хранения цифровой информации относится – использование жестких дисков, Flash-носители (SSD диски, флешки и карты памяти), запись оптических дисков (CD, DVD и диски Blu-Ray). Дополнительно, существует масса облачных хранилищ для любых данных (Dropbox, Яндекс Диск, Google Drive и многие другие).

Как вы думаете, что из всего перечисленного является лучшим местом хранения важной информации? Давайте изучим каждый из этих способов.

Как вы поняли, среди самых доступных способов, лучше всего хранить свои данные именно на оптических дисках. Но не все из них способны справиться с течением безжалостного времени и дальше вы узнаете, какие лучше подходят для наших целей. Кроме того, хорошим решением будет использование сразу нескольких, упомянутых способов, одновременно.

Используем оптические диски правильно!

Возможно, некоторые из вас наслышаны о том, как долго можно сохранить информацию на оптических дисках типа CD или DVD. Некоторые, наверное, даже записали определенные данные на них, но через время (несколько лет) не удалось прочесть диски.

На самом деле тут нет ничего удивительного, срок хранения информации на подобных носителях тоже зависит от многих факторов. В первую очередь, важную роль играет качества самого диска и его тип. Кроме этого следует и придерживаться определенных условий хранения и процесса записи.

  • Не используйте для долговременного хранения перезаписываемые виды дисков (CD-RW, DVD-RW), они не созданы для этих целей.
  • Тестирование показало, что статистически наиболее длительный срок хранения информации именно у CD-R дисков и он превышает 15 лет. Только половина всех проверенных DVD-R показала подобные результаты. Что касается Blu-ray, то тут точную статистику найти не удалось.
  • Не стоит гнаться за дешевизной и покупать болванки которые продаются за копейки. Они имеют очень низкое качество и не подойдут для важной информации.
  • Записывайте диски на минимальной скорости и делайте все в одну сессию записи.
  • Диски должны хранится в защищенном от прямых солнечных лучей месте, со стабильной, комнатной температурой и умеренной влажностью. Не подвергайте их никаким механическим воздействиям.
  • В отдельных случаях, на саму запись влияет и качество привода, который «нарезает» болванки.

Какой стоит выбрать диск для хранения данных?

Как вы уже поняли, диски бывают разные. Все главные отличия связанны с отражающей поверхностью, типом поликарбонатной основы и качеством в целом. Даже есть брать продукцию одной и той же фирмы, но изготовленную в разных странах, то даже тут качество может различаться на порядок.

В качестве поверхности, на которую производится запись используют цианиновый, фталоцианиновый или металлизированные слои. Отражающая поверхность создается золотым, серебряным или из сплавов серебра покрытием. Наиболее качественные и долговечные диски изготавливаются именно из фталоцианина с золотым напылением (т. к. золото не подвержено окислению). Но есть диски и с другими комбинациями этих материалов, которые также могут похвастаться хорошей долговечностью.

К большому огорчению привела попытка отыскать специальные диски для хранения данных, у нас их практически не реально встретить. При желании, такие оптические носители можно заказать через интернет (далеко не всегда дешево). Среди лидеров, которые могут сохранить вашу информацию как минимум на столетие можно выделить DVD-R и CD-R Mitsui (этот производитель вообще гарантирует до 300 лет хранения), MAM-A Gold Archival, JVC Taiyu Yuden и Varbatium UltraLife Gold Archival.

К числу самых идеальных вариантов, для хранения цифровой информации можно добавить и Delkin Archival Gold, которые вообще нигде не встретились на территории нашей страны. Но как уже было сказано, все перечисленное можно без особого труда заказать в интернет-магазинах.

Из доступных дисков, которые можно у нас встретить, самым качественными и способными обеспечить сохранность информации как минимум на десятилетие будут:

  • Verbatium, Индийского, Сингапурского, ОАЭ или Тайваньского изготовления.
  • Sony, которые создаются в том же Тайване.

Но тот факт, что эти все диски умеют долго хранить информацию еще не гарантирует, что она на долго сохранится. Поэтому не забывайте придерживаться тех правил, которые мы выделили еще в самом начале.

Взгляните на следующий график, на нем обозначена зависимость появления ошибок считывания данных, от времени нахождения оптического диска в агрессивной среде. Понятное дело, что график создан именно для маркетингового продвижения товара, но все же обратите внимание, что на нем есть очень любопытная Millenniata, на дисках которой вообще не появляются ошибки. Сейчас мы о ней узнаем больше.

Millenniata M-Disk

Среди продукции этой компании есть диски серии M-Disk DVD-R и M-Disk Blu-Ray способные хранить важные данные сроком до 1000 лет. Такая потрясающая надежность достигается использованием в основе дисков неорганического стеклоуглерода, который в отличии от остальных дисков, где используются органические материалы, не подвержен окислению, разложению под действием света и тепла. Такие диски легко будут переносить попадание кислот, щелочей и растворителей, а также могут похвастаться более высокой стойкостью к механическим воздействиям.

Во время записи, на поверхности, в прямом смысле слово прожигаются небольшие окошки (на обычных дисках происходит пигментация пленки). Основа диска аналогично рассчитана на более серьезные испытания и способна сохранять свою структуру даже под воздействием высоких температур.

Средства долговременного хранения и накопления данных (внешнее запоминающие устройство) обеспечивают запись и чтение больших массивов информации, в качестве которых могут использоваться: тексты программ на языках высокого уровня, программы в машинных кодах, файлы с данными и т.д. В качестве внешних запоминающих устройств в ПЭВМ в основном используются накопители на гибких магнитных дисках (НГМД) и накопители на жестких магнитных дисках (НМД) типа "винчестер".

Накопители на гибких магнитных дисках являются основными устройствами внешней памяти ПЭВМ. Носителем информации в НГМД служит гибкий магнитный диск (ГМД), изготовленный из синтетической пленки, покрытой износоустойчивым ферролаком. Информация на ГМД размещается в последовательном коде на концентрических окружностях (дорожках), каждая из которых разбита на секторы. Сектор является единицей обмена данными между ОП и НГМД. В одном секторе может размещаться 128,256, 512 или 1024 байт данных. В ПЭВМ перечисленные форматы данных можно устанавливать программно.

ГМД имеет установочное отверстие (УО) для фиксации диска в дисководе и индексное отверстие (ИО) для идентификации начала дорожек. Для защиты от неблагоприятных воздействий внешней среды ГМД помещается в прямоугольный конверт, имеющий прорезь для подвода магнитных головок (ПМГ), прорезь индексного отверстия (ПИО) и отверстие крепления ГМД в дисководе (ОКД). Информация, которая записывается на ГМД, по своему назначению подразделяется на служебную и рабочую. Служебная информация используется для управления и синхронизации работы НГМД. Она в свою очередь подразделяется на информацию, индентефицирующую дорожку, и информацию, индентефицирующую сектор. Рабочая информация представляет данные пользователя.

Емкость НГМД в ПЭВМ составляет 160 Кбайт и более в зависимости от количества магнитных головок в накопителе и плотности записи данных на ГМД. Существуют следующие разновидности НГМД: с одинарной и двойной плотностью записи; односторонние - с одной и двусторонние - с двумя МГ. В двусторонних НГМД для записи и чтения данных можно использовать обе поверхности ГМД. В соответствии с разновидностями НГМД принята и соответствующая маркировка ГМД: SS - односторонний диск одинарной плотности; SD - односторонний диск двойной плотности; DD - двусторонний диск двойной плотности.

Наряду с НГМД развитые модели ПЭВМ комплектуются также накопителями на магнитных дисках типа "винчестер". Их отличительные особенности -герметично закрытая единая конструкция диска, магнитных головок чтение-записи и их привода, небольшой зазор (по сравнению с обычными НДМ) между магнитными головками и поверхностью диска(0,5 мкм), небольшое давление прижима магнитной головки (10 г по сравнению с 350 г в обычных НМД), малая толщина магнитного диска.


Герметично закрытая конструкция увеличивает в 2 раза надежность работы по сравнению с обычным НМД. Уменьшение зазора между поверхностью диска и магнитными головками значительно увеличивает продольную и поперечную плотность записи. НМД типа "винчестер" считаются третьем поколением НМД и имеют близкие к предельным характеристики. Так, НМД диаметром 356 мм на одной поверхности может включать до 1770 дорожек (1300 Мбайт информации).

Разработка модемов.

Первые системы обработки информации, в которых для подключения абонентов к ЭВМ применялась телеграфная аппаратура, были созданы в начале 60-х годов. В таких системах передача велась с применением обычной телеграфной аппаратуры при относительно низких скоростях, не превышающих 110 бит/сек.

Следующим этапом в развитии систем передачи данных явилась разработка модемов, обеспечивающих возможность передачи двоичной информации по телефонным линиям.

Модем - электронное устройство, наделенное функциями модулирования данных на передающем конце линии связи и демодулирования на принимающем конце линии связи. Модулирование сигнала означает преобразование сигнала к виду, позволяющему передавать его на дальние расстояния. Например, типичный акустический модем оборудован двумя чашеобразными рецепторами, на которые кладется телефонная трубка. Модем подсоединен к компьютеру, от которого принимает информацию в виде последовательности двоичных сигналов - битов. Однако телефон предназначен для передачи звуковой частоты, а двоичные биты - это всего лишь электрические импульсы, не слышные человеческому уху. Поэтому электрические импульсы предварительно преобразуются в модеме в сигналы звуковой частоты, а затем передаются по телефонным линиям. На другом конце происходит обратный процесс переводы сигналов звуковой частоты в последовательность двоичных электрических импульсов - битов, пригодных для работы компьютера. Такие преобразования называются модулированием и демодулированием, описанное устройство является всего лишь простейшим модемом.

Первые образцы модемов имели относительно низкую скорость передачи данных, однако в дальнейшем скорость передачи по коммутируемым каналам возросла до 1200 бит/сек в дуплексном режиме - режиме одновременного ввода и вывода информации или до 9600 бит/сек в полудуплексном режиме - режиме предназначенном для поочередного ввода и вывода информации.

С середины 60-х годов начинается интенсивное развитие специализированных систем обработки информации, базирующихся на выделенных каналах. Такие системы создаются для обеспечения потребностей отдельных организаций, владеющих как вычислительными ресурсами, так и каналами связи. Однако эксплуатация таких систем показала, что применяемые в них вычислительные ресурсы и каналы связи используются недостаточно эффективно, системы оказываются дорогими и мало приспособленными к изменяющимся условиям. Выявилась потребность многих пользователей обращаться к мощным вычислительным машинам на относительно короткие промежутки времени.

Все это привело к разработке систем передачи данных коллективного пользования, в которых многие пользователи могут через сети связи общего пользования подключаться по своему выбору к различным средствам обработки информации.

Клавиатура.

Клавиатура важное и универсальное устройство ввода информации в компьютер.

По расположению клавиш настольные клавиатуры делятся на два основных типа, функционально ничуть не уступающие друг другу. В первом варианте функциональные клавиши располагаются в двух вертикальных рядах, а отдельных группы клавиш управления курсором нет. Всего в такой клавиатуре 84 клавиши.

Второй вариант клавиатуры, которую принято называть усовершенствованной, имеет 101 или 102 клавиши. Клавиатурой такого типа снабжаются сегодня почти все настольные персональные компьютеры. Профессионалы не любят эту клавиатуру из-за того, что к функциональным клавишам приходиться далеко тянуться, в самый верхний ряд клавиш через всю буквенную клавиатуру. Однако количество функциональных клавиш в усовершенствованной клавиатуре не 10, а все 12.

В портативном компьютере клавиатура обычно является встроенной частью конструкции.

Расположение буквенных клавиш на компьютерных клавиатурах стандартно. Сегодня повсеместно применяется стандарт QWERTY -по первым шести латинским буквенным клавишам верхнего ряда. Ему соответствует отечественный стандарт ЙЦУКЕН расположения клавиш кириллицы, практически аналогичный расположению клавиш на пишущей машинке.

Стандартизация в размере и расположении клавиш нужна для того, чтобы пользователь на любой клавиатуре мог без переучивания работать “слепым методом”. Слепой десятипальцевый метод работы является наиболее продуктивным, профессиональным и эффективным. Увы, клавиатура из-за низкой производительности пользователя оказывается сегодня самым “узким местом” быстродействующей вычислительной системы.

Работать с клавиатурой очень просто и наглядно. Чтобы каждому символу клавиатуры поставить в соответствие определенный байт информации, используют специальную таблицу кодов ASCII (American Standart Code for Information Interchange) -американский стандарт кодов для обмена информацией, применяемой на большинстве компьютеров.

После нажатия клавиши клавиатура посылает процессору сигнал прерывания и заставляет процессор приостановить свою работу и переключиться на программу обработки прерывания клавиатуры.

При этом клавиатура в своей собственной специальной памяти запоминает, какая клавиша была нажата (обычно в памяти клавиатуры может храниться до 20 кодов нажатых клавиш, если процессор не успевает ответить на прерывание). После передачи кода нажатой клавиши процессору эта информация из памяти клавиатуры исчезает.

Кроме нажатия клавиатура отмечает также и отпускание каждой клавиши, посылая процессору свой сигнал прерывания с соответствующим кодом.

Ввод символов с клавиатуры осуществляется только в той точке экрана, где располагается курсор. Курсор представляет собой прямоугольник или черту контрастного цвета длинной в один символ.

Специальные клавиши клавиатуры : Специальные (служебные) клавиши выполняют следующие основные функции: {ENTER} -ввод команд на выполнение процессором; {ESC} -отмена какого-либо действия; {TAB} -перемещение курсора на позицию табуляции; {INS} -переключение режима вставки символа в положении курсора в ражим забоя символа в положении курсора;

{DEL} -удаление символа в положении курсора;

{BACKSPACE} -удаление символа слева от курсора;

{HOME} -перемещение курсора в начало текста;

{END} -перемещение курсора в конец текста;

{PGUP} -перемещение курсора на одну экранную страницу по тексту вверх;

{PGDN} -перемещение курсора на одну экранную страницу по тексту вниз;

{ALT} и {CTRL} -при одновременном нажатии этих клавиш с какой-либо другой вызывается изменение действия последней;

{SHIFT} -удержание этой клавиши в нажатом состоянии обеспечивает смену регистра;

{CAPS LOCK} -фиксация/расфиксация регистра заглавных букв;